|
|
Books > Social sciences > Education > Teaching of a specific subject
New Directions in Teaching English: Reimagining Teaching, Teacher
Education and Research attempts to create a comprehensive vision of
critical and culturally relevant English teaching at the dawn of
the 21st century. This book is multi-voiced. It includes
perspectives from classroom teachers, teacher educators, and
researchers in language and literacy, positioned to respond to
recent changes in national conversations about literacy, learning,
and assessment. These variously situated authors also recognize the
rapidly changing demographics in schools, the changing nature of
literacy in the digital age, and the increasing demands for
literacy in the workplace. This book is critical. At all times
education is a political act, and schools are embedded within a
sociocultural reality that benefits some at the expense of others.
Therefore the approach advocated through many of the chapters is
one of critical literacy, where English students gain reading and
writing skills and proficiency with digital technologies that allow
them to become more able, discerning, and empowered consumers and
producers of texts.
Limited resources and other factors pose major challenges for
engineering, technology, and science educators ability to provide
adequate laboratory experience for students. An Internet accessible
remote laboratory, which is an arrangement that allows laboratory
equipment to be controlled remotely, addresses these difficulties
and allows more efficient laboratory management. Internet
Accessible Remote Laboratories: Scalable E-Learning Tools for
Engineering and Science Disciplines collects current developments
in the multidisciplinary creation of Internet accessible remote
laboratories. This book offers perspectives on teaching with online
laboratories, pedagogical design, system architectures for remote
laboratories, future trends, and policy issues in the use of remote
laboratories. It is useful resource for graduate and undergraduate
students in electrical and computer engineering and computer
science programs, as well as researchers who are interested in
learning more about the current status of the field, as well as
various approaches to remote laboratory design.
There is no shortage of urgent, complex problems that mathematics
education can and should engage with. Pandemics, forest fires,
pollution, Black Lives Matter protests, and fake news all involve
mathematics, are matters of life and death, have a clear political
dimension, and are interdisciplinary in nature. They demand a
critical approach. The authors in this volume showcase new
insights, teaching ideas and new and unique ways of applying
critical mathematics education, in areas as diverse as climate
change, obesity, decolonisation and ethnomathematics. This book
demonstrates that there is plenty to be done with critical
mathematics education. Contributors are: Annica Andersson, Tonya
Gau Bartell, Richard Barwell, Lisa Lunney Borden, Sunghwan Byun,
Anna Chronaki, Brian Greer, Jennifer Hall, Victoria Hand, Kjellrun
Hiis Hauge, Beth Herbel-Eisenmann, Rune Herheim, Courtney Koestler,
Kate le Roux, Swapna Mukhopadhyay, Aldo Parra, Anita Rampal, Sheena
Rughubar-Reddy, Toril Eskeland Rangnes, Ulrika Ryan, Lisa
Steffensen, Paola Valero and David Wagner.
Experts in social studies education and gifted education share
teacher?tested strategies for differentiating social studies in
K?12 classrooms. Chapter authors showcase best-practice and
research?based lessons and activities that enrich and expand social
studies instruction while building K?12 students' critical and
creative thinking. Each chapter contains two or more teacher?tested
lessons or activities linking social studies content and concepts
to the standards and recommendations of the National Association
for Gifted Children (NAGC) and National Council for the Social
Studies (NCSS). This edited volume is targeted toward K?12 teachers
and administrators, gifted education coordinators and consultants,
parents of gifted children, social studies methods instructors, and
central office administrators. Each chapter contains activities
that can be adapted and replicated in teachers' classrooms.
Chapters focus on significant social studies topics such as civic
education, historical thinking, drama, and teaching with primary
sources. Each topic is approached in ways that meet the needs of
gifted education students. Through its emphasis on critical
thinking, inquiry?based instruction, and higher order thinking
skills, activities and lessons in the book challenge K?12 educators
to raise the bar for classroom instruction in ways that improve
opportunities of learning for all students.
The Relationship of Affect and Creativity in Mathematics explores
the five legs of creativity-Iconoclasm, Impartiality, Investment,
Intuition, and Inquisitiveness-as they relate to mathematical
giftedness. This book: Discusses these affective components
relevant to mathematical learning experiences. Shares how affective
components impact students' creative processes and products. Shows
the influence of learning facilitators, including teachers,
afterschool mentors, and parents. Describes facilitating
environments that may enhance the likelihood that creative process
and ultimately product emerge. Utilizes the expertise of two young
scholars to discuss the practical effects of affect and creativity
in learning experiences. This practical, research-based book is a
must-read for stakeholders in gifted education, as many advanced
students are underidentified in the area of creativity in
mathematics.
Globalization, Nationalism, and Music Education in the Twenty-First
Century in Greater China examines the recent developments in school
education and music education in Greater China - Mainland China,
Hong Kong, and Taiwan - and the relationship between, and
integration of, national cultural identity and globalization in
their respective school curriculums. Regardless of their common
history and cultural backgrounds, in recent decades, these
localities have experienced divergent political, cultural, and
educational structures. Through an analysis of the literature,
official curriculum documents, approved music textbooks, and a
survey questionnaire and in-depth interviews with music teachers,
this book also examines the ways in which policies for national
identity formation and globalization interact to complement and
contradict each other in the context of music education in respect
to national and cultural values in the three territories. Wai-Chung
Ho's substantive research interests include the sociology of music,
China's education system, and the comparative study of East Asian
music education. Her research focuses on education and development,
with an emphasis on the impact of the interplay between
globalization, nationalization, and localization on cultural
development and school music education.
These materials were developed, in part, by a grant from the
federally-funded Mathematics and Science Partnership through the
Center for STEM Education. Some of the activities were adapted from
the National Council of Teachers of Mathematics Illuminations, the
National Library of Virtual Manipulatives, Hands-On Math Projects
with Real Applications by Judith A. Muschla and Gary R. Muschla,
Learning Math with Calculators: Activities for Grades 3-8 by Len
Sparrow and Paul Swan, and Mathematical Ideas by Charles D. Miller,
Vern E. Heeren and John Hornsby.
For anyone interested in the history and effects of the
introduction of so-called "Modern Mathematics" (or "Mathematique
Moderne," or "New Mathematics," etc.) this book, by Dirk De Bock
and Geert Vanpaemel, is essential reading. The two authors are
experienced and highly qualified Belgian scholars and the book
looks carefully at events relating to school mathematics for the
period from the end of World War II to 2010. Initially the book
focuses on events which helped to define the modern mathematics
revolution in Belgium before and during the 1960s. The book does
much more than that, however, for it traces the influence of these
events on national and international debates during the early
phases of the reform. By providing readers with translations into
English of relevant sections of key Continental documents outlining
the major ideas of leading Continental scholars who contributed to
the "Mathematique Moderne" movement, this book makes available to a
wide readership, the theoretical, social, and political backdrops
of Continental new mathematics reforms. In particular, the book
focuses on the contributions made by Belgians such as Paul Libois,
Willy Servais, Frederique Lenger, and Georges Papy. The influence
of modern mathematics fell away rapidly in the 1970s, however, and
the authors trace the rise and fall, from that time into the 21st
century, of a number of other approaches to school mathematics-in
Belgium, in other Western European nations, and in North America.
In summary, this is an outstanding, landmark publication displaying
the fruits of deep scholarship and careful research based on
extensive analyses of primary sources.
This book provides an insightful view of effective teaching
practices in China from an international perspective by examining
the grades 7-12 mathematics teacher preparation in the Shandong
province of China. It is an excellent reference book for teacher
educators, researchers, reformers, and teaching practitioners. A
qualitative research approach, involving in-depth interviews with
purposive sampling of ten grades 7-12 award-winning mathematics
teachers, was chosen to conduct the study. The participants are
from the Shandong province and have been awarded recognition for
his/her achievements in teaching grades 7-12 mathematics by the
different levels: school, district, city, province, or nation; and
his/her students have achieved high average scores in college
entrance exams or in high school entrance exams among the classes
at the same grade level. Data analysis revealed the following
findings: first, grades 7-12 mathematics teachers from the Shandong
province of China were prepared to teach through pre-service
training, in-service training, and informal learning. The
pre-service training can be characterized as emphasizing formal
mathematics training at advanced level. The in-service training is
integrated with teacher collaboration and teaching research, and
has the characteristics of diversity, continuity, and orientation
toward teaching practice. The in-service training also stimulates
teachers to conduct selfdirected learning. Second, the
award-winning grades 7-12 mathematics teachers are identified by
the following characteristics: they are passionate about
mathematics and share their passion through teaching; they actively
take part in teaching research through application of teaching
research in the classroom, collaboration with peers, and systematic
lesson preparation; they apply technology into teaching; and they
take an active role in teaching research in order to expand their
professional opportunities. Based on the findings of this study,
the following conclusions were reached: pre-service training and
in-service training are both necessary processes for mathematics
teachers to build up their knowledge base for effective teaching.
Pre-service training is just a starting point for the teaching
profession. In-service training, integrated with teacher
collaboration and teaching research should be a continuous activity
that is a part of a teacher's everyday life.
A volume in Research in Mathematics Education Series Editor Barbara
J. Dougherty, University of Mississippi This volume investigates
the evolution of the geometry curriculum in the United States over
the past 150 years. A primary goal is to increase awareness of the
nature of the current geometry curriculum by investigating the
historical, mathematical and pedagogical influences that it has
sustained since its inception. Given the limited access to
first-hand accounts of the enacted geometry curriculum during the
past 150 years, the book relies on textbooks to provide a record of
the implemented curriculum at any given point in time and on policy
documents and journal articles to provide insight into the
prevalent issues and arguments of the day. The book is organized in
a chronological sequence of ""notable events"" leading to
discernable changes in thinking about the geometry curriculum over
the past century and a half-roughly the extent of time during which
geometry has been taught in American schools. Notable events
include important reports or commissions, influential texts, new
schools of thought, and developments in learning technologies.These
events affected, among other things: content and aims of the
geometry curriculum; the nature of mathematical activity as
construed by both mathematicians and mathematics educators; and,
the resources students are given for engaging in mathematical
activity. Before embarking through the notable events, it is
necessary to consider the ""big bang"" of geometry, namely the
moment in time that shaped the future life of the geometry
curriculum. This corresponds to the emergence of Euclidean
geometry. Given its influence on the shape of the geometry
curriculum, familiarity with the nature of the geometry articulated
in Euclid's Elements is essential to understanding the many
tensions that surround the school geometry curriculum. Several
themes emerge over the course of the monograph, and include: the
aims and means of the geometry curriculum, the importance of proof
in geometry, the role of visualization and tactile experiences, the
fusion between solid and plane geometry, the curricular connections
between geometry and algebra, and the use of motion and continuity.
The intended audience would include curriculum developers,
researchers, teachers, and curriculum supervisors.
Sarnikar cites evidence of frequent misconceptions of economics
amongst students, graduates, and even some economists, and argues
that behavioral economists are uniquely qualified to investigate
causes of poor learning in economics. She conducts a review of the
economics education literature to identify gaps in current research
efforts and suggests a two-pronged approach to fill the gaps: an
engineering approach to the adoption of innovative teaching methods
and a new research program to enhance economists' understanding of
how learning occurs. To facilitate research into learning
processes, Sarnikar provides an overview of selected learning
theories from psychology, as well as new data on hidden
misconceptions amongst beginning students of economics. She argues
that if they ask the right questions, economists of all persuasions
are likely to find surprising lessons in the answers of beginning
students of economics.
Web 2.0 technologies, open source software platforms, and mobile
applications have transformed teaching and learning of second and
foreign languages. Language teaching has transitioned from a
teacher-centered approach to a student-centered approach through
the use of Computer-Assisted Language Learning (CALL) and new
teaching approaches. Engaging Language Learners through Technology
Integration: Theory, Applications, and Outcomes provides empirical
studies on theoretical issues and outcomes in regards to the
integration of innovative technology into language teaching and
learning. This reference wok discusses empirical findings and
innovative research using software and applications that engage
learners and promote successful learning, essential tools for
educational researchers, instructional technologists, K-20 language
teachers, faculty in higher education, curriculum specialists, and
researchers.
A Volume in The Montana Mathematics Enthusiast: Monograph Series in
Mathematics Education Series Editor Bharath Sriraman, The
University of Montana The name of Zoltan P. Dienes (1916-) stands
with those of Jean Piaget and Jerome Bruner as a legendary figure
whose theories of learning have left a lasting impression on the
field of mathematics education. Dienes' name is synonymous with the
Multi-base blocks (also known as Dienes blocks) which he invented
for the teaching of place value. He also is the inventor of
Algebraic materials and logic blocks, which sowed the seeds of
contemporary uses of manipulative materials in mathematics
instruction. Dienes' place is unique in the field of mathematics
education because of his theories on how mathematical structures
can be taught from the early grades onwards using multiple
embodiments through manipulatives, games, stories and dance.
Dienes' notion of embodied knowledge presaged other cognitive
scientists who eventually came to recognize the importance of
embodied knowledge and situated cognition - where knowledge and
abilities are organized around experience as much as they are
organized around abstractions. Dienes was an early pioneer in what
was later to be called sociocultural perspectives and
democratization of learning. This monograph compiled and edited by
Bharath Sriraman honors the seminal contributions of Dienes to
mathematics education and includes several recent unpublished
articles written by Dienes himself. These articles exemplify his
principles of guided discovery learning and reveal the non-trivial
mathematical structures that can be made accessible to any student.
The monograph also includes a rare interview with Dienes in which
he reflects on his life, his work, the role of context, language
and technology in mathematics teaching and learning today. The book
finds an important place in any mathematics education library and
is vital reading for mathematics education researchers, cognitive
scientists, prospective teachers, graduate students and teachers of
mathematics.
|
|