![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
These volumes, 9 and 10, of Fracture Mechanics of Ceramics constitute the proceedings of an international symposium on the fracture mechanics of ceramic materials held at the Japan Fine Ceramics Center, Nagoya, Japan on July 15, 16, 17, 1991. These proceedings constitute the fifth pair of volumes of a continuing series of conferences. Volumes 1 and 2 were from the 1973 symposium, volumes 3 and 4 from a 1977 symposium, and volumes 5 and 6 from a 1981 symposium all of which were held at The Pennsylvania State University. Volumes 7 and 8 are from the 1985 symposium which was held at the Virginia Polytechnic Institute and State University. The theme ofthis conference, as for the previous four, focused on the mechanical behavior ofceramic materials in terms of the characteristics of cracks, particularly the roles which they assume in the fracture processes and mechanisms. The 82 contributed papers by over 150 authors and co-authors represent the current state of that field. They address many of the theoretical and practical problems ofinterest to those scientists and engineers concerned with brittle fracture.
Theoretical and experimental work on solids with low-dimensi onal cooperative phenomena has been rather explosively expanded in the last few years, and it seems to be quite fashionable to con tribute to this field, especially to the problem of one-dimensional metals. On the whole, one could divide the huge amount of recent investigations into two parts although there is much overlap bet ween these regimes, namely investigations on magnetic exchange interactions constrained to mainly one or two dimensions and, secondly, work done on Id metallic solids or linear chain compounds with Id delocalized electrons. There is, of course, overlap from one extreme case to the other with these solids and in some rare cases both phenomena are studied on one and the same crystal. In fact, however, most of the scientific groups in this area could be associated roughly with one of these categories and, in addition, a separation between theoreticians and experimentalists in each of these groups leads to a further splitting of interests although many theories about these solids have been tested by experimenta lists. Nevertheless, more cooperation and understanding between scientists working on low-dimensional cooperative phenomena should appreciably stimulate further development. With a better inderdis ciplinary understanding, new ideas could possibly help chemists in synthesizing tailor-cut solids. This would in return give experi mentalists new phenomena to examine and finally would stimulate new theoretical work."
Building on the extensive coverage of the first volume, Volume 2 focuses on the fundamentals of measurements and computational techniques that will aid researchers in the construction and use of measurement devices.
Approximately half of the world production of the petrochemical industry (more than 100 million tonnes) is in the form of polymers, yet it would probably surprise most people to learn how much their lifestyle depends on polymers ranging, as they do, from detergents, kitchenware and electrical appliances to furnishings and a myriad other domestic goods. Still less are they likely to be aware of the extensive part they play in engineering applications for mechanical machine components and advanced high performance aircraft. This versatility derives from the fact that polymeric materials are made up of a range of molecules of varying length, whose properties are related to molecular structure and the proportions of the chains in the mixture. For example, polypropylene is a commodity polymer which is produced in hun dreds of different grades to meet specific market requirements. This depends on the catalyst as well as the operating conditions and reactor design. A major area for growth is in substituting polymers for conventional materials such as ceramics and metals. Not only can they match these materials in terms of mechanical strength and robustness but they have very good resistance to chemical attack. Polyamides, for example, are widely used for car bumpers and new polymers are being developed for engine manifolds and covers. In 1993 there is, typically, 100 kg of various polymers used in cars and this is continually increasing, giving a net weight reduction and hence better fuel economy."
Summary of the recent progress in ceramics research. Several novel concepts for materials selection and microstructural design are presented, as are experimental results that substantiate the ideas.
It is almost self-evident that surface and interface science, coupled with the electronic structure of bulk materials, playa fundamental role in the understanding of materials properties. If one is to have any hope of understanding such properties as catalysis, microelectronic devices and contacts, wear, lubrication, resistance to corrosion, ductility, creep, intragranular fracture, toughness and strength of steels, adhesion of protective oxide scales, and the mechanical properties of ceramics, one must address a rather complex problem involving a number of fundamental parameters: the atomic and electronic structure, the energy and chemistry of surface and interface regions, diffusion along and across interfaces, and the response of an interface to stress. The intense need to gain an understanding of the properties of surfaces and interfaces is amply attested to by the large number of conferences and workshops held on surface and interface science. Because of this need, the fields of surface and interface science have been established in their own right, although their development presently lags behind that of general materials science associated with bulk, translationally invariant systems. There are good reasons to expect this situation to change rather dramatically in the next few years. Existing techniques for investigating surfaces and interfaces have reached maturity and are increasingly being applied to systems of practical relevance. New techniques are still being created, which drastically widen the scope of applicability of surface and interface studies. On the experimental side, new microscopies are bearing fruit.
This volume presents a theoretical and numerical investigation of high index-contrast passive components that can serve as building blocks at the end-points and nodes of WDM communications systems. It presents novel devices for filtering, optical interconnections and coupling to fibres.
The microanalytical technique of atom probe tomography (APT) permits the spatial coordinates and elemental identities of the individual atoms within a small volume to be determined with near atomic resolution. Therefore, atom probe tomography provides a technique for acquiring atomic resolution three dimensional images of the solute distribution within the microstructures of materials. This monograph is designed to provide researchers and students the necessary information to plan and experimentally conduct an atom probe tomography experiment. The techniques required to visualize and to analyze the resulting three-dimensional data are also described. The monograph is organized into chapters each covering a specific aspect of the technique. The development of this powerful microanalytical technique from the origins offield ion microscopy in 1951, through the first three-dimensional atom probe prototype built in 1986 to today's commercial state-of-the-art three dimensional atom probe is documented in chapter 1. A general introduction to atom probe tomography is also presented in chapter 1. The various methods to fabricate suitable needle-shaped specimens are presented in chapter 2. The procedure to form field ion images of the needle-shaped specimen is described in chapter 3. In addition, the appearance of microstructural features and the information that may be estimated from field ion microscopy are summarized. A brief account of the theoretical basis for processes of field ionization and field evaporation is also included.
Silicon, as an electronic substrate, has sparked a technological revolution that has allowed the realization of very large scale integration (VLSI) of circuits on a chip. These 6 fingernail-sized chips currently carry more than 10 components, consume low power, cost a few dollars, and are capable of performing data processing, numerical computations, and signal conditioning tasks at gigabit-per-second rates. Silicon, as a mechanical substrate, promises to spark another technological revolution that will allow computer chips to come with the eyes, ears, and even hands needed for closed-loop control systems. The silicon VLSI process technology which has been perfected over three decades can now be extended towards the production of novel structures such as epitaxially grown optoelectronic GaAs devices, buried layers for three dimensional integration, micromechanical mechanisms, integrated photonic circuits, and artificial neural networks. This book begins by addressing the processing of electronic and optoelectronic devices produced by using lattice mismatched epitaxial GaAs films on Si. Two viable technologies are considered. In one, silicon is used as a passive substrate in order to take advantage of its favorable properties over bulk GaAs; in the other, GaAs and Si are combined on the same chip in order to develop IC configurations with improved performance and increased levels of integration. The relationships between device operation and substrate quality are discussed in light of potential electronic and optoelectronic applications.
This monograph, which is the outcome of the ASI on High Pressure Chemistry, Biochemistry, and Materials Science, illustrates new developments in the field of high pressure science. In fact, for chemists, biochemists, and materials scientists, pressure as an experimental variable represents a tool which provides unique information about systems of materials studied. It is interesting to note how the growth of the high pressure field is also reflected in the content of the recent ASI's dealing with this field. The ASI High Pressure Chemistry held in 1977 was followed by the ASI High Pressure Chemistry and Biochemistry held in 1986, and the coverage of the present ASI also includes applications to materials science. In view of the teaching character of the ASI, it is natural that main contributions to this volume present overviews of the different subfields or applications of high pressure research. In contrast, contributed papers offer more specialized aspects of various high pressure studies. The various contributions to this volume make clear the impressive range of fundamental and applied problems that can be studied by high pressure techniques, and also point towards a major growth of high pressure science and technology in the near future. This ASI focused mainly on advances achieved in the six years since the previous ASI devoted to the high pressure field. The organization of this volume is as follows.
In recent years remarkable progress has been made in the development of materials for ultrasonic transducers. There is a continuing trend towards increasingly higher frequency ranges for the application of ultrasonic trans ducers in modern technology. The progress in this area has been especially rapid and articles and papers on the subject are scattered over numerous technical and scientific journals in this country and abroad. Although good books have appeared on ultrasonics in general and ultrasonic transducers in particular in which, for obvious reasons, materials play an important part, no comprehensive treatise is available that represents the state-of-the-art on modern ultrasonic transducer materials. This book intends to fill a need for a thorough review of the subject. Not all materials are covered of which, theoretically, ultrasonic trans ducers could be made but those that are or may be of technical impor tance and which have inherent electro acoustic transducer properties, i.e., materials that are either magnetostrictive, electrostrictive, or piezoelectric. The book has been devided into three parts which somewhat reflect the historic development of ultrasonic transducer materials for important tech nical application. Chapter 1 deals with magnetostrictive materials, magnetostrictive met als and their alloys, and magnetostrictive ferrites (polycrystalline ceramics). The metals are useful especially in cases where ruggednes of the transducers are of overriding importance and in the lower ultrasonic frequency range."
Polymer composites represent materials of great and of continuously growing importance. Their potential for application appears to be limitless. They have been the subject of numerous studies both at academic and industrial levels. Much progress has been made in the incisive formulation of composites; sophisticated methods of property evaluation have been developed in the past decade and many, largely empirical solutions have been proposed to resolve the problem of their long-term performance under typical conditions of use (i. e. the use of silane or titane coupling agents to enhance adhesion within composite materials). Assuredly one of the most essential factors in the performance of these systems is the condition of the interface and interphase among the constituents of a given system. It has become clear that it is the interface/interphase, and the interactions which take place in this part of a system, which determine to a significant degree the initial properties of the material. In order to achieve leadership in the formulation and application of polymer composites, it is evident that in depth understanding of interfacial and interphase phenomena becomes a prerequisite.
Lo, soul! seest thou not God's purpose from the first? The earth to be spann'd, connected by net-work From Passage to India! Walt Whitman, "Leaves of Grass", 1900. The Internet is growing at a tremendous rate today. New services, such as telephony and multimedia, are being added to the pure data-delivery framework of yesterday. Such high demands on capacity could lead to a "bandwidth-crunch" at the core wide-area network resulting in degra dation of service quality. Fortunately, technological innovations have emerged which can provide relief to the end-user to overcome the In ternet's well-known delay and bandwidth limitations. At the physical layer, a major overhaul of existing networks has been envisaged from electronic media (such as twisted-pair and cable) to optical fibers - in the wide area, in the metropolitan area, and even in the local area set tings. In order to exploit the immense bandwidth potential of the optical fiber, interesting multiplexing techniques have been developed over the years. Wavelength division multiplexing (WDM) is such a promising tech nique in which multiple channels are operated along a single fiber si multaneously, each on a different wavelength. These channels can be independently modulated to accommodate dissimilar bit rates and data formats, if so desired. Thus, WDM carves up the huge bandwidth of an optical fiber into channels whose bandwidths (1-10 Gbps) are compati ble with peak electronic processing speed.
This 6th International Symposium on Thermal Expansion, the first outside the USA, was held on August 29-31, 1977 at the Gull Harbour Resort on Hecla Island, Manitoba, Canada. Symposium Chairman was Ian D. Peggs, Atomic Energy of Canada Limited, and our continuing sponsor was CINDAS/Purdue University. We made considerable efforts to broaden the base this year to include more users of expansion data but with little success. We were successful, however, in establishing a session on liquids, an area which is receiving more attention as a logical extension to the high-speed thermophysical property measurements on materials at temperatures close to their melting points. The Symposium had good international representation but the overall attendance was, disappointingly, relatively low. Neverthe less, this enhanced the informal atmosphere throughout the meeting with a resultant frank exchange of information and ideas which all attendees appreciated. A totally new item this year was the presentation of a bursary to assist an outstanding research student to attend the Symposium. We were delighted to welcome Mr. Benedick Fraass from the Univer sity of Illinois to the Symposium, and he responded by making an informal presentation on the topic of his research. We hope this feature will continue. Previous Symposia in the series were: DATE SPONSOR LOCATION CHAIRMEN September 18-20 Gaithersburg, R.K. Kirby Natl. Bureau of 1968 Maryland Standards P.S. Gaal Westinghouse Astronuclear Lab. June 10-12 Santa Fe, R.O. Simmons Materials Res. Lab."
There is a great deal of interest in extending nondestructive technologies beyond the location and identification of cracks and voids. Specifically there is growing interest in the application of nondestructive evaluation (NOEl to the measurement of physical and mechanical properties of materials. The measurement of materials properties is often referred to as materials characterization; thus nondestructive techniques applied to characterization become nondestructive characterization (NDCl. There are a number of meetings, proceedings and journals focused upon nondestructive technologies and the detection and identification of cracks and voids. However, the series of symposia, of which these proceedings represent the fourth, are the only meetings uniquely focused upon nondestructive characterization. Moreover, these symposia are especially concerned with stimulating communication between the materials, mechanical and manufacturing engineer and the NDE technology oriented engineer and scientist. These symposia recognize that it is the welding of these areas of expertise that is necessary for practical development and application of NDC technology to measurements of components for in service life time and sensor technology for intelligent processing of materials. These proceedings are from the fourth international symposia and are edited by c.o. Ruud, J. F. Bussiere and R.E. Green, Jr. . The dates, places, etc of the symposia held to date area as follows: Symposia on Nondestructive Methods for TITLE: Material Property Determination DATES: April 6-8, 1983 PLACE: Hershey, PA, USA CHAIRPERSONS: C.O. Ruud and R.E. Green, Jr."
Number 25 of this acclaimed series breaks new ground with articles on charge transfer across liquid-liquid interfaces, electrochemical techniques to study hydrogen ingress in metals, and electrical breakdown of liquids. Also included are articles on the measurement of corrosion and ellipsometry, bringing these older subjects up to date.
Motivation The other day I was waiting at the station for my train. Next to me a young lady was nonchalantly leaning against the wall. Suddenly, she took a cigarette pack out of her handbag, pulled out the last cigarette, put it between her lips, crushed the empty pack, threw it on the ground and hedonistically lit the cigarette. I thought to myself, "What a behavior? ." The nearest trashcan was just five meters away. So I bent down, took the crushed pack and gave it back to her, saying that she had lost it. She looked at me in a rather deranged way, but she said nothing and of waste to the trashcan. brought the piece Often people are not aware of the waste they produce. They get rid of it and that's it. As soon as the charming lady dropped the cigarette pack, the problem was solved for her. The pack was on the ground and it suddenly no longer belonged to her. It is taken for granted that somebody else will do the cleaning up. There is a saying that nature does not produce waste. For long as humans obtained the goods they needed from the ground where they lived, the waste that was produced could be handled by nature. This has drastically changed due to urbanization and waste produced by human activities has become a severe burden.
From its early days in the 1950s, the electron microanalyzer has offered two principal ways of obtaining x-ray spectra: wavelength dispersive spectrometry (WDS), which utilizes crystal diffraction, and energy dispersive spectrometry (EDS), in which the x-ray quantum energy is measured directly. In general, WDS offers much better peak separation for complex line spectra, whereas EDS gives a higher collection efficiency and is easier and cheaper to use. Both techniques have undergone major transformations since those early days, from the simple focusing spectrometerand gas proportional counter of the 1950s to the advanced semiconductor detectors and programmable spectrometersoftoday. Becauseofthesedevelopments, thecapabilities and relative merits of EDS and WDS techniques have been a recurring feature of microprobeconferences for nearly40 years, and this volume bringstogetherthepapers presented at the Chuck Fiori Memorial Symposium, held at the Microbeam Analysis Society Meeting of 1993. Several themes are apparent in this rich and authoritative collection of papers, which have both a historical and an up-to-the-minute dimension. Light element analysis has long been a goal of microprobe analysts since Ray Dolby first detected K radiation with a gas proportional counter in 1960. WDS techniques (using carbon lead stearate films) were not used for this purpose until four years later. Now synthetic multilayers provide the best dispersive elements for quantitative light element analy sis-still used in conjunction with a gas counter.
Computer Simulation in Chemical Physics contains the proceedings of a NATO Advanced Study Institute held at CORISA, Alghero, Sardinia, in September 1992. In the five years that have elapsed since the field was last summarized there have been a number of remarkable advances which have significantly expanded the scope of the methods. Good examples are the Car--Parrinello method, which allows the study of materials with itinerant electrons; the Gibbs technique for the direct simulation of liquid--vapor phase equilibria; the transfer of scaling concepts from simulations of spin models to more complex systems; and the development of the configurational--biased Monte-Carlo methods for studying dense polymers. The field has also been stimulated by an enormous increase in available computing power and the provision of new software. All these exciting developments, an more, are discussed in an accessible way here, making the book indispensable reading for graduate students and research scientists in both academic and industrial settings.
A multi-authored, edited work. This volume forms a comprehensive treatise on the development, manufacture, testing and applications of a broad range of ceramic, glass ceramic and carbon matrix composite materials developed in the former Soviet Union. For each of these three classes of composite materials, background theory and extensive property data are also given.
Polymers continue to play an ever increasing role in the modern world. In fact it is quite inconceivable to most people that we could ever have existed of the increased volume and variety of materials without them. As a result currently available, and the diversity of their application, characterisation has become an essential requirement of industrial and academic laboratories in volved with polymeric materials. On the one hand requirements may come from polymer specialists involved in the design and synthesis of new materials who require a detailed understanding of the relationship between the precise molecular architecture and the properties of the polymer in order to improve its capabilities and range of applications. On the other hand, many analysts who are not polymer specialists are faced with the problems of analysing and testing a wide range of polymeric materials for quality control or material specification purposes. We hope this book will be a useful reference for all scientists and techno or industrial laboratories, logists involved with polymers, whether in academic and irrespective of their scientific discipline. We have attempted to include in one volume all of the most important techniques. Obviously it is not possible to do this in any great depth but we have encouraged the use of specific examples to illustrate the range of possibilities. In addition numerous references are given to more detailed texts on specific subjects, to direct the reader where appropriate. The book is divided into II chapters."
Extensive studies of high-Tc cuprate superconductors have stimualted investigations into various transition-metal oxides. Mott transitions in particular provide fascinating problems and new concepts in condensed matter physics. This book is a collection of overviews by well-known, active researchers in this field. It deals with the latest developments, with particular emphasis on the theoretical, spectroscopic, and transport aspects.
The volumes 11 and 12 of Fracture Mechanics of Ceramics constitute the proceedings of the 6th International Symposium on Fracture Mechanics of Ceramics held at the Research Center Karlsruhe, Germany, July 18,19,20,1995. As in previous conferences the state of the art of the failure behaviour of monolithic engineering ceramics and of reinforced ceramics was discussed. The 90 papers by over 200 authors and co-authors address the recent devel- opments in the understanding and the modelling of the fracture processes in brittle materi- als. The main topics are R-curve behaviour, toughness determination, surface effects, com- posite materials, high temperature behaviour, ceramic-metal joints, fatigue. The program chairmen gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (German Science Foundation) which made possible the participa- tion of scientists from East Europe. We also thank Mrs. Eva Schroder from the Research Cen- ter Karlsruhe, the local organization committee (Dirk Hertel, Claus Petersen, Dr. Franz Porz, Rainer Weif3) and the conference secretary Mrs. Lucia Borchardt for their conscientious and efficient organization of all details of the conference, Mrs. Isabella Daubenthaler and Mrs. Natascha Rothweiler for preparing the booklet of abstracts and Dr. Theo Fett for his help in editing the proceedings.
The workshop on "Optical Properties of Low Dimensional Silicon sL Structures" was held in Meylan, France on March, I yd, 1993. The workshop took place inside the facilities of France Telecom- CNET. Around 45 leading scientists working on this rapidly moving field were in attendance. Principal support was provided by the Advanced Research Workshop Program of the North Atlantic Treaty Organisation (NATO). French Delegation a l'Armement and CNET gave also a small financial grant, the organisational part being undertaken by the SEE and CNET. There is currently intense research activity worldwide devoted to the optical properties of low dimensional silicon structures. This follow the recent discovery of efficient visible photoluminescence (PL) from highly porous silicon. This workshop was intended to bring together all the leading European scientists and laboratories in order to reveal the state of the art and to open new research fields on this subject. A large number of invited talks took place (12) together with regular contribution (20). The speakers were asked to leave nearly 1/3 of the time to the discussion with the audience, and that promoted both formal and informal discussions between the participants. |
![]() ![]() You may like...
Blockchain Life - Making Sense of the…
Kary Oberbrunner, Lee Richter
Hardcover
R543
Discovery Miles 5 430
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,470
Discovery Miles 24 700
Interaction Flow Modeling Language…
Marco Brambilla, Piero Fraternali
Paperback
R1,234
Discovery Miles 12 340
Pro Oracle Application Express
John Scott, Scott Spendolini
Paperback
Principles of Research in Behavioral…
Bernard E. Whitley Jr, Mary E. Kite
Paperback
R1,631
Discovery Miles 16 310
Migrating to the Cloud - Oracle…
Tom Laszewski, Prakash Nauduri
Paperback
|