![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium*, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material index and Mrs. H. Evans for typing-assist ance. I express particular gratitude to Mrs. F. Nedee, who, like in 1981 and 1982, has put the magnificent Corsendonk Conference Center at our disposal and to Mr. D. Van Der Brempt, Director of the Corsendonk Conference Center, for the efficient way in which he and his staff took care of the practical organization at the Conference Center.
This book presents detailed discussions of several of the large scale applications of superconductivity which will have major economic impact on technical developments in the industrial world. The world wide concern with energy problems makes this work particularly timely. Some of the large scale devices and systems such as superconducting generators, motors, power transmission, large magnets, high speed ground transportation and industrial processing clearly speak directly to improved efficiencies of generation and utilization of energy. The articles treat each subject in depth. The text is suitable for advanced undergradu ate or graduate engineering or applied science courses. The text should also be of immediate use to practicing engineers and scientists in applied superconductivity. The unique summaries of national efforts in applied superconductivity will also be valuable to industrial and government plan ners. The book is based on a NATO Advanced Study Institute entitled, "Large Scale Applications of Superconductivity and Magnetism" which was held September 5 to 14 in the Hotel des Alpes, Entreves, Valle d'Aosta, Northern Italy. This Study Institute represented a departure from other NA TO Advanced Study Institutes in that it was very strongly directed toward engineering applications rather than purely scientifically oriented interests. The planning of this Institute developed over several years and would not have been possible without continued interest by several key NATO Scientific Mfairs Division scientists. It started when one of us (S. F. ) met with Dr. H."
Shunsuke Hirotsu "Coexistence of Phases and the Nature of First-Order Transition in Poly-N-isopropylacrylamide Gels," Masayuki Tokita "Friction between Polymer Networks of Gels and Solvent," Masahiro Irie "Stimuli-Responsive Poly(N-isopropyl- acrylamide), Photo- and Chemicals-Induced Phases Transitions Edward Cussler, Karen Wang, John Burban"Hydrogels as Separation Agents," Stevin Gehrke "Synthesis, Equilibrium Swelling, Kinetics Permeability and Applications of Environmentally Responsive Gels," Pedro Verdugo "Polymer Gel Phase Transition in Condensation- Decondensation of Secretory Products," Etsuo Kokufuta "Novel Applications for Stimulus-Sensitive Polymer Gels in the Preparation of Functional Immobilized Biocatalysts," Teruo Okano "Molecular Design of Temperature-Responsive Polymers as Intelligent Materials," Atsushi Suzuki "Phase Transition in Gels of Sub-Millimeter Size Induced by Interaction with Stimuli," Makoto Suzuki, O. Hirasa "An Approach to Artificial Muscle by Polymer Gels due to Micro-Phase Separation."
The Eleventh University Conference on Ceramic Science held at Case Western Reserve University fran June 3 - 5, 1974 was devoted to the subject of M:l.ss Transport Phenanena in Ceramics. '!his book follows closely the fonn of the oonference. While the active participation at the meeting was not reoorded, it is clear that many of the contributors have benefited fran the ranarks, suggestions, and criticisms of the participants. Fur- thennore, the session chainnen -- Delbert Day (Univ. of Missouri), WU. IaCourse {AlfrErl Univ.) , W. Richard ott (Rutgers Univ.) , A.L. FriErlberg (Univ. of Illinois), v. Stubican (Penn. State Univ.), and R. Loehman (Univ. of Florida) -- successfully kept the meeting to a reasonable schedule, but also stimulated the lively discussion. The book divides naturally into four sections, focusing on correlation and ooup1ing effects in diffusion in ionic materials, understanding of fast ion transport, diffusion and electrical con- ductivity in crystalline and glassy oxides and applications of diffusion to oxidation and other processes of current interest. The editors have benefited fran the cheerful help and assis- tance of many people. !-1rs. Karyn P1etka typed the entire manu- script with unusual accuracy and tolerance. Mr. MakmJd E1Lei1, Ajit Sane, Leslie M:l.jor and Ms. Jenny Sang provided the subject index. The authors have been cooperative and understanding and we ack.now1Erlge our enjoyment in working with them.
F.J. Balta-Calleja, A. Gonzalez Arche, T.A. Ezquerra, C. Santa Cruz, F. Batallan, B. Frick, G.A. Arche, E. Lopez Cabarcos, Structure and Properties of Ferroelectric Copolymers of Poly (vinylidene) Fluoride H.G. Kilian, T. Pieper Packing of Chain Segments: A Method for Describing X-Ray Patterns of Crystalline, Liquid Crystalline and Non-Crystalline Polymers K. Miyasaka PVA-Iodine Complexes: Formation, Structure and Properties
tions is not possible without first putting the problem into a wider con text. Consequently, before proceeding with detailed critical topical cov erage of individual biomass energy sources, uses, and effects, I will extend this preface with a few pages of rather personal reflections (I will use the same device in closing the book: after providing concise topical summaries in Chapter 8, I will conclude with some essayistic musings on renewable energetics, plants, people, and a scientist's responsibility). Interest in biomass energies is just a part of a broader global trend toward renewable energetics, a trend which has evolved speedily after the crude oil price escalation started in 1973. Yet one must be reminded that for the rich countries fossil fuels are, and for a long period shall remain, the foundation of an affluent civilization, while throughout the poor world the reliance of most people on biomass energies for everyday subsistence has brought many damaging environmental and social ef fects; that the reality of sharp price rises for crude oil (actually not so sharp once adjusted for inflation) should not be misconstrued as an "energy crisis"; that the rise of renew abies and the claims made on their behalf by countless enthusiasts look so much better on paper than in reality; and that the potential of biomass energies, an essential ingre dient of renewable scenarios, has been judged more with proselytizing zeal than with critical detachment."
Elucidation of the various mechanisms responsible for fracture in different materials was the general subject of the Fourth Annual Symposium on Fundamental Phenomena in the Materials Sciences held January 31 and February 1, 1966, in Boston and sponsored by the Ilikon Corporation of Natick, Massachusetts. In an analysis of the brittle-to-ductile transition in polycrystalline metals, T. L. Johnston (Ford Motor Company) placed major emphasis on factors related to the plastic resistance associated with grain boundaries and the effects of plastic anisotropy. Utilizing a generalized form of the Griffith criterion, he said it can be readily shown that several individual factors may be made reasonably quantitative and that the nature of plastic response can be predicted. Specifically, it can be shown that a critical factor relates to the length of a plastic shear zone which is constrained by an elastically loaded matrix. As this length increases, the Griffith inequality is satisfied and brittle failure occurs; however, the use of decreased grain sizes or the refine ment of dislocation or twin distribution can further tend to "homoge nize" the plastic flow and to decrease the magnitude of the shear zone. Of considerable importance in the consideration of plastic resistance is the availability of favorably oriented slip systems in aa un sheared crystallite."
Making Flory-Huggins Practical: Thermodynamics of Polymer-Containing Mixtures, by B. A. Wolf * Aqueous Solutions of Polyelectrolytes: Vapor-Liquid Equilibrium and Some Related Properties, by G. Maurer, S. Lammertz, and L. Ninni Schafer * Gas-Polymer Interactions: Key Thermodynamic Data and Thermophysical Properties, by J.-P. E. Grolier, and S. A.E. Boyer * Interfacial Tension in Binary Polymer Blends and the Effects of Copolymers as Emulsifying Agents, by S. H. Anastasiadis * Theory of Random Copolymer Fractionation in Columns, by Sabine Enders * Computer Simulations and Coarse-Grained Molecular Models Predicting the Equation of State of Polymer Solutions, by K. Binder, B. Mognetti, W. Paul, P. Virnau, and L. Yelash * Modeling of Polymer Phase Equilibria Using Equations of State, by G. Sadowski
The 39th Annual Denver X-Ray Conference on Applications of X-Ray Analysis was held July 30 -August 3, 1990, at the Sheraton Steamboat Resort and Conference Center, Steamboat Springs, Colorado. The "Denver Conference" is recognized to be a major event in the x-ray analysis field, bringing together scientists and engineers from around the world to discuss the state of the art in x-ray applications as well as indications for future develop ments. In recent years there has been a steady expansion of applications of x-ray analysis to characterize surfaces and thin films. To introduce the audience to one of the exciting and important new developments in x-ray fluorescence, the topic for the Plenary Session of the 1990 Conference was: "Surface and Near-Surface X-Ray Spectroscopy. " The Conference had the privilege of inviting five leading world experts in the field of x-ray spectroscopy to deliver lectures at the Plenary Session. The first two lectures were on total-reflection x-ray fluorescence spectrometry. Professor P. Wobrauschek of Austria reviewed "Recent Developments and Results in Total-Reflection X-Ray Fluorescence. " Trends and applications of the technique were also discussed. Dr. T. Arai of Japan reported on "Surface and Near-Surface Analysis of Silicon Wafers by Total Reflection X-Ray Fluorescence. " He emphasized the importance of using proper x-ray optics to achieve high signal-to-noise ratios. A mathematical model relating the x-ray intensity to the depth of x-ray penetration was also described.
Although in nature the vast majority of polymers are condensation polymers, much publicity has been focused on functionalized vinyl polymers. Functional Condensation Polymers fulfills the need to explore these polymers which form an increasingly important and diverse foundation in the search for new materials in the twentyfirst century. Some of the advantages condensation polymers hold over vinyl polymers include offering different kinds of binding sites, their ability to be made biodegradable, and their different reactivities with various reagents under diverse reaction conditions. They also offer better tailoring of end-products, different tendencies (such as fiber formation), and different physical and chemical properties. Some of the main areas emphasized include dendrimers, control release of drugs, nanostructure materials, controlled biomedical recognition, and controllable electrolyte and electrical properties.
Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization. The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nuclear reaction analysis. The second part turns to applications, looking at the broad range of potential uses in thin film reactions, ion implantation, nuclear energy, biology, and art/archaeology. Examines classical collision theory Details the fundamentals of five specific ion beam analysis techniques Illustrates specific applications, including biomedicine and thin film analysis Provides examples of ion beam analysis in traditional and emerging research fields Supplying readers with the means to understand the benefits and limitations of IBA, the book offers practical information that users can immediately apply to their own work. It covers the broad range of current and emerging applications in materials science, physics, art, archaeology, and biology. It also includes a chapter on computer applications of IBA.
Bringing Scanning Probe Microscopy Up to Speed introduces the principles of scanning probe systems with particular emphasis on techniques for increasing speed. The authors include useful information on the characteristics and limitations of current state-of-the-art machines as well as the properties of the systems that will follow in the future. The basic approach is two-fold. First, fast scanning systems for single probes are treated and, second, systems with multiple probes operating in parallel are presented. The key components of the SPM are the mechanical microcantilever with integrated tip and the systems used to measure its deflection. In essence, the entire apparatus is devoted to moving the tip over a surface with a well-controlled force. The mechanical response of the actuator that governs the force is of the utmost importance since it determines the scanning speed. The mechanical response relates directly to the size of the actuator; smaller is faster. Traditional scanning probe microscopes rely on piezoelectric tubes of centimeter size to move the probe. In future scanning probe systems, the large actuators will be replaced with cantilevers where the actuators are integrated on the beam. These will be combined in arrays of multiple cantilevers with MEMS as the key technology for the fabrication process.
In 1987 a major breakthrough occurred in materials science. A new family of materials was discovered that became superconducting above the temperature at which nitrogen gas liquifies, namely, 77 K or -196 DegreesC. Within months of the discovery, a wide variety of experimental techniques were brought to bear in order to measure the properties of these materials and to gain an understanding of why they superconduct at such high temperatures. Among the techniques used were electromagnetic absorption in both the normal and the superconducting states. The measurements enabled the determination of a wide variety of properties, and in some instances led to the observation of new effects not seen by other measu- ments, such as the existence of weak-link microwave absorption at low dc magnetic fields. The number of different properties and the degree of detail that can be obtained from magnetic field- and temperature-dependent studies of electromagnetic abso- tion are not widely appreciated. For example, these measurements can provide information on the band gap, critical fields, the H-T irreversibility line, the amount of trapped flux, and even information about the symmetry of the wave function of the Cooper pairs. It is possible to use low dc magnetic field-induced absorption of microwaves with derivative detection to verify the presence of superconductivity in a matter of minutes, and the measurements are often more straightforward than others. For example, they do not require the physical contact with the sample that is necessary when using four-probe resistivity to detect superconductivity.
This volume, the proceedings of a 1998 international workshop, provides experimental evidence of the effects of correlation on the physical, chemical, and mechanical properties of materials, as well as the theoretical/computational methodology that has been developed for their study.
The third International Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston, Massachusetts, on November 17-20, 1980, as part of the Annual Meeting of the Materials Research Society. The purpose of this Symposium was to provide an interdisciplinary forum for the discussion of scientific research dealing with all levels and types of radioactive wastes and their management. Since its inception in 1978, this annual Symposium has provided a unique opportunity for scientists of widely differing backgrounds to share in such discussions. The proceedings of the first two meetings were published as Volumes 1 and 2 in this series. The fourth Symposium is scheduled to be held in the autumn of 1981. The efforts of many people went into making this meeting a success. The scope of the 1980 Symposium was guided by the follow ing Steering Committee: K. J. Notz (Chairman), Oak Ridge National Laboratory, USA G. H. Daly, Department of Energy, USA D. E. Ferguson, Oak Ridge National Laboratory, USA R. H. Flowers, Atomic Energy Research Establishment, UK F. Girardi, Ispra Establishment, Italy T. Ishihara, Radioactive Waste Management Center, Japan R. W. Lynch, Sandia Laboratories, USA S. A. Mayman, Atomic Energy of Canada Ltd., Canada G. J. McCarthy, North Dakota State University, USA E. Merz, Kernforschunganlage Jillich, FRG L. Nilsson, KBS Project, Sweden D. M. Rohrer, Nuclear Regulatory Commission, USA R. Roy, Pennsylvania State University, USA T. "E. Scott, Ames Laboratory, USA C."
This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, and engineering, with length scales ranging from Angstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M. F. Thorpe, Series Editor E-mail: thorpe@pa. msu. edu v PREFACE th th During the period 4 -8 August 1996, a conference with the same title as this book was held in Traverse City, Michigan. That conference was organized as a sequel to an interesting and successful WEM workshop in a similar area run by Profs. Hans Bonzel and Bill Mullins in May 1995. This book contains papers presented at the Traverse City conference. The book focuses on: atomic processes, step structure and dynamics; and their effect on surface and interface structures and on the relaxation kinetics of larger leng- scale nonequilibrium morphologies.
This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods.
This book includes small and large scale applications of super conductivity. Part I, SQUIDs, comprises about 75% of this volume, and is devoted to small scale applications, mainly . uperconducting QUantum Interference Devices (SQUIDs), and the remainder, Part H, Machines, presents an updated review of large scale applications of superconduc tivity. The present book combined with the previous book Superconducting Machines and Devices: Large Systems Applications edited by S. Foner and B. B. Schwartz, Plenum Press, New York (1974) represents a detailed and most up-to-date review of the applications of superconducting tech nology. The text of the current book is suitable for advanced undergrad uates or graduate students in applied physics and engineering courses. The book should be valuable to scientists, engineers and technologists interested in the current status and future applications of superconduc tivity technology. The last 7 chapters in Part I review the major nation al efforts on small scale technology and should prove useful for industrial and government planners as weIl as scientists and engineers."
These volumes, 7 and 8, of Fracture Mechanics of Ceramics constitute the proceedings of an international symposium on the fracture mechanics of ceramic materials held at Virginia Polytechnic Institute and State University, Blacksburg, Virginia on June 19, 20 and 21, 1985. These proceedings constitute the fourth pair of volumes of a continuing series of conferences. The theme of this conference, as the previous three, focused on the mechanical behavior of ceramic materials in terms of the characteristics of cracks, particularly the roles which they assume in the fracture process. The 78 contributed papers by over 100 authors and co-authors represent the current state of the field. They address many of the theoretical and practical problems of interest to those concerned with brittle fracture. The program chairmen gratefully acknowledge the financial assistance for the Symposium provided by the EXXON Foundation, the Army Research Office, the National Science Foundation, and the Office of Naval Research. Without their support, this conference simply would not have been possible. The suggestions of Drs. J. C. Hurt, R. C. Pohanka, and L. Toth were particularly helpful in assuring the" success of this symposium. Special appreciation is extended to Professor J. I. Robertson, C. P. Miles Professor of History, whose presentation following the banquet on the American Civil War was very well received by the audience. Finally, we wish to also thank our joint secretaries, especially Karen Snider, for their patience and help in finally bringing these proceedings to press.
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail. |
![]() ![]() You may like...
Modelling, Analysis, and Control of…
Ziyang Meng, Tao Yang, …
Hardcover
R3,117
Discovery Miles 31 170
Chaos and Complex Systems - Proceedings…
Stavros G. Stavrinides, Mehmet Ozer
Hardcover
R5,577
Discovery Miles 55 770
ROMANSY 18 - Robot Design, Dynamics and…
Werner Schiehlen, Vincenzo Parenti-Castelli
Hardcover
R5,669
Discovery Miles 56 690
Security Policy in System-on-Chip…
Sandip Ray, Abhishek Basak, …
Hardcover
R1,521
Discovery Miles 15 210
Test Generation of Crosstalk Delay…
S. Jayanthy, M.C. Bhuvaneswari
Hardcover
R4,102
Discovery Miles 41 020
Passivity of Complex Dynamical Networks…
Jinliang Wang, Huai-Ning Wu, …
Hardcover
R4,123
Discovery Miles 41 230
Circadian Rhythms for Future Resilient…
Xinfei Guo, Mircea R Stan
Hardcover
R2,885
Discovery Miles 28 850
|