![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
This text on numerical methods applied to the analysis of electromagnetic nondestructive testing (NOT) phenomena is the first in a series devoted to all aspects of engineering nondestructive evaluation. The timing of this series is most appropriate as many university engineering/physics faculties around the world, recognizing the industrial significance of the subject, are organizing new courses and programs with engineering NOE as a theme. Additional texts in the series will cover electromagnetics for engineering NOE, microwave NOT methods, ultrasonic testing, radiographic methods and signal processing for NOE. It is the intended purpose of the series to provide senior-graduate level coverage of the material suitable for university curricula and to be generally useful to those in industry with engineering degrees who wish to upgrade their NOE skills beyond those needed for certification. This dual purpose for the series reflects the very applied nature of NOE and the need to develop suitable texts capable of bridging the gap between research laboratory studies of NOE phenomena and the real world of certification and industrial applications. The reader might be tempted to question these assertions in light of the rather mathematical nature of this first text. However, the subject of numerical modeling is of critical importance to a thorough understanding of the field-defect interactions at the heart of all electromagnetic NOT phenomena.
This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc tion to the field for potential new participants, an in-depth and broad exposure for stu dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials and with various intercalants, and an elaboration of the complementarity of intercalated layered materials with deliberately structured superlattices."
The book deals with atomistic properties of solids which are determined by the crystal structure, interatomic forces and atomic displacements influenced by the effects of temperature, stress and electric fields. The book gives equal importance to experimental details and theory. There are full chapters dedicated to the tensor nature of physical properties, mechanical properties, lattice vibrations, crystal structure determination and ferroelectricity. The other crystalline states like nano-, poly-, liquid- and quasi crystals are discussed. Several new topics like nonlinear optics and the Rietveld method are presented in the book. The book lays emphasis on the role of symmetry in crystal properties. Comprehensiveness is the strength of the book; this allows users at different levels a choice of chapters according to their requirements.
F.K. Lehner: A Review of the Linear Theory of Anisotropic Poroelastic Solids. - J.W. Rudnicki: Eshelby's Technique for Analyzing Inhomogeneities in Geomechanics. - Y. Gueguen, M. Kachanov: Effective Elastic Properties of Cracked and Porous Rocks - an Overview. - J.L. Raphanel: 3D Morphology Evolution of Solid-Fluid Interfaces by Pressure Solution. - Y.M. Leroy: An Introduction to the Finite-Element Method for Linear and Non-linear Static Problems. The mechanical behaviour of the earth's upper crust enters into a great variety of questions in different areas of the geological and geophysical sciences as well as in the more applied geotechnical disciplines. This volume presents a selection of papers from a CISM course in Udine on this topic. While each of these chapters will make for a useful contribution in its own right, the present bundle also illustrates, by way of examples, the variety of theoretical concepts and tools that are currently brought to bear on earth deformation studies, ranging from reviews of poroelastic field theory to micro-mechanical and homogenization studies, chemomechanics and interfacial stability theory of soluble solids under stress, and finally to an introduction to the finite element method.
Das Buch enthalt Kapitel uber: N. Kinjo, M. Ogata, Ibaraki-ken; K. Nishi, Tokyo; A. Kaneda, Yokohama, Japan: Epoxyd-Formmassen als Einschlussmaterialien fur mikroelektronische Gerate Yu.S. Lipatov, T.E. Lipatova, L.F. Kosyanchuk, Kiev, UdSSR: Synthese und Struktur struktureller Makromolekule K. Horie, I. Mita, Tokyo, Japan: Reaktionen und Photodynamik in polymeren Festkorpern Yu.K. Godovsky, V.S. Papkov, Moskau, UdSSR: Thermotrope Mesophasen elementorganischer Polymere
The liquid crystalline state may be identified as a distinct and unique state of matter which is characterised by properties which resemble those of both solids and liquids. It was first recognised in the middle of the last century through the study of nerve myelin and derivatives of cholesterol. The research in the area really gathered momentum, however, when as a result of the pioneering work of Gray in the early 1970's organic compounds exhibiting liquid crystalline properties were shown to be suitable to form the basis of display devices in the electronic products. The study of liquid crystals is truly multidisciplinary and has attached the attention of physicists, biologists, chemists, mathematicians and electronics engineers. It is therefore impossible to cover all these aspects fully in two small volumes and therefore it was decided in view of the overall title of the series to concentrate on the structural and bonding aspects of the subject. The Chapters presented in these two volumes have been organised to cover the following fundamental aspects of the subiect. The calculation of the structures of liquid crystals, an account of their dynamical properties and a discussion of computer simulations of liquid crystalline phases formed by Gay Berne mesogens. The relationships between molecular conformation and packing are analysed in some detail. The crystal structures of liquid crystal mesogens and the importance of their X ray scattering properties for characterisational purposes are discussed.
H. Yoshida, T. Ichikawa Electron Spin Echo Studies of Free Radicals in Irridated Polymers M. Ogasawara Application of Pulse Radiolysis to the Study of Polymers and Polymerizations I. Kaetsu Radiation Synthesis of Polymeric Materials for Biomedical and Biochemical Applications S. Tagawa Radiation Effects of Ion Beams on Polymers H.Yamaoka Polymer Materials for Fusion Reactors
The IUTAM Symposium on Constitutive Relation in High/Very High Strain Rates (CRHVHSR) was held October 16 - 19, 1995, at Seminar House, Science University of Tokyo, under the sponsorship of IUTAM, Japan Society for the Promotion of Science, The Commemorative Association for the Japan World Exposition (1970), Inoue Foundation for Science, The Japan Society for Aeronautical and Space Sciences, and Science University of Tokyo. The proposal to hold the symposium was accepted by the General Assembly of IUT AM held in Haifa, Israel, in August 1992, and the scientists mentioned below were appointed by the Bureau of IUTAM to serve as members of the Scientific Committee. The main object of the symposium was to make a general survey of recent developments in the research of constitutive relations in high and very high strain rates and related problems in high velocity solid mechanics, and to explore further new ideas for dealing with unresolved problems of a fundamental nature as well as of practical importance. The subjects covered theoretical, experimental, and numerical fields in the above-mentioned problems in solids, covering metals, polymers, ceramics, and composites. Emphasis was given to the following fields: 1. Material characterization of solids in high velocity deformation, experimental techniques, typical data obtained by these techniques, modeling, and constitutive relations 2. Strain rate dependent elasto-visco-plastic stress waves 3. Crack initiation, propagation, and dynamic fracture toughness 4. Dynamic stress concentration 5. Structural dynamics in impact and constitutive relations of solids 6.
1. R.C. Mehrotra, Jaipur, India Present Status and Future Potential of the Sol-Gel Process 2. J. Fricke, A. Emmerling, Wuerzburg, FRG Aerogels - Preparation, Properties, Applications 3. S. Sakka, T. Yoko, Kyoto, Japan Sol-Gel-Derived Coating Films and Applications 4. H. Schmidt, Saarbruecken, FRG Thin Films, the Chemical Processing up to Gelation 5. M. Henry, J.P. Jolivet, J. Livage, Paris, France Aqueous Chemistry of Metal Cations: Hydrolysis, Condensation and Complexation 6. R. Reisfeld, Jerusalem, Israel, C.K. Joergensen, Geneva, Switzerland Optical Properties of Colorants or Luminescent Species in Sol-Gel Glasses
Some years ago in Paisley (Scotland) the International Conference on Composite Materials, headed by Professor I. Marshall, took place. During the conference, I presented a paper on the manufacturing and properties of the Soviet Union's composite materials. Soviet industry had made great achievements in the manufacturing of composite materials for aerospace and rocket applications. For example, the fraction of composites (predominantly carbon fibre reinforced plastics) in the large passenger aircrafts Tu-204 and 11-86 is 12-15% of the structure weight. The percentage by weight share of composites in military aircraft is greater and the fraction of composites (organic fibre reinforced plastics) used in military helicopters exceeds a half of the total structure weight. The nose parts of most rockets are produced in carbon-carbon materials. In the Soviet spacecraft 'Buran' many fuselage tubes are made of boron-aluminium composites. Carbon-aluminium is used for space mirrors and gas turbine blades. These are just a few examples of applications. Many participants at the Paisley conference suggested that the substantial Soviet experience in the field of composite materials should be distilled and presented in the form of a comprehensive reference publication. So the idea of the preparation and publication of a six volume work Soviet Advanced Composites Technology, edited by Academician J. Fridlyander and Professor I. Marshall, was born.
F.J. Balta-Calleja, A. Gonzalez Arche, T.A. Ezquerra, C. Santa Cruz, F. Batallan, B. Frick, G.A. Arche, E. Lopez Cabarcos, Structure and Properties of Ferroelectric Copolymers of Poly (vinylidene) Fluoride H.G. Kilian, T. Pieper Packing of Chain Segments: A Method for Describing X-Ray Patterns of Crystalline, Liquid Crystalline and Non-Crystalline Polymers K. Miyasaka PVA-Iodine Complexes: Formation, Structure and Properties
Continued and systematic analysis of the mechanics of flexible fibre assemblies dates from about 1945, although the growth of research into textiles after 1920 had included studies of fabric structure and the measurement of mechanical properties. The subject is thus a young one, although this NATO Advanced Study Institute is a sign of developing maturity. However there is an earlier tradition. Relevant, even if somewhat loosely connected, quotations can be found in the works of the engineers of the ancient civilisations, recurring during the llenaissance with Leonardo da Vinci and Galileo. But the glorious libk is with Euler and the Bernoulli family, with their theories of the mechanics of flexible slender rods. While mathematicians have admired the beauty of this work, the invention of elliptic integrals, and the grace of the different classes of planar elastica, it is in the technology of textile materials, composed of flexible fibres and yarns, that the subject has found its more direct application. All this, and much more such as Max Born's doctoral thesis, was brought to our attention in a delightful discourse by Milos Konopasek, who is not only fascinated by the mathematics of Euler and the modern movement of the solutions of bending curves from two dimensions into three by the use of the computer, but also feels a personal link through having lived and studied within sight of the scene of Euler's triumphs in St. Petersburg.
The production of multi layered thin films with sufficient reliability is a key technology for device fabrication in micro electronics. In the Co/Cu type multi layers, for example, magnetoresistance has been found as large as 80 % at 4. 2 K and 50 % at room temperature. In addition to such gigantic mag netoresistance, these multi layers indicate anti ferromagnetic and ferromag netic oscillation behavior with an increase in the thickness of the layers of the non magnetic component. These interesting properties of the new synthetic flmctional materials are attributed to their periodic and interracial structures at a microscopic level, although the origin of such peculiar features is not fully understood. Information on the surface structure or the number density of atoms in the near surface region may provide better insight. Amorphous alloys, frequently referred to as metallic glasses, are produced by rapid quenching from the melt. The second generation amorphous alloys, called "bulk amorphous alloys," have been discovered in some Pd based and Zr based alloy systems, with a super cooled liquid region at more than 120 K. In these alloy systems, one can obtain a sample thickness of several centime ters. Growing scientific and technological curiosity about the new amorphous alloys has focused on the fundamental factors, such as the atomic scale struc ture, which are responsible for the thermal stability with certain chemical compositions.
The IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media took place at the University of Sydney from January 18- 22, 1999. It brought together leading researchers from eleven countries for a week-long meeting, with the aim of providing cross-links between the com- nities studying related problems involving elastic and electromagnetic waves in structured materials. After the meeting, participants were invited to submit articles based on their presentations, which were refereed and assembled to constitute these Proceedings. The topics covered here represent areas at the forefront of research intoelastic and electromagnetic waves. They include effect of nonlinearity, diffusion and multiple scattering on waves, as well as asymptotic and numerical techniques. Composite materials are discussed in depth, with example systems ranging fromdusty plasmas to a magneto-elastic microstructured system. Also included are studies of homogenisation, that field which seeks to determine equivalent homogeneous systems which can give equivalent wave properties to structured materials, and inverse problems, in which waves are used as a probe to infer structural details concerning scattering systems. There are also strong groups of papers on the localization of waves by random systems, and photonic and phononic band gap materials. These are being developed by analogue with semiconductors for electrons, and hold out the promise of enabling designers to control the propagation of waves through materials in novel ways. We would like to thank the other members of the Scientific Committee (A.
This volume includes 58 contributions to the 11th International Conference on Surface and Colloid Science, a highly successful conference sponsored by the International Association of Colloid and Interface Scientists and held in Iguassu Falls, Brazil, in September 2003. Topics covered are the following: Biocolloids and Biological Applications, Charged Particles and Interfaces, Colloid Stability, Colloidal Dispersions, Environmental Colloidal Science, Interfaces and Adsorption, Nanostructures and Nanotechnology, Self-Assembly and Structured Fluids, Surfactants and Polymers, Technology and Applications, Colloids and Surfaces in Oil Production. Surface and colloid science has acquired great momentum during the past twenty years and this volume is a good display of new results and new directions in this important area.
The broad field of conformational motion disorder in crystals is described with particular attention to the separation from the well known mesophases of liquid crystals and plastic crystals. Structure, thermodynamics and motion of a larger number of small and large molecules are discussed. Of special interest are the borderlines between smectic and high viscosity liquid crystals and condis crystals and between plastic crystals and condis crystals as complicated by pseudorotation, jumping between symmetry-related states and hindered rotation. This paper illustrates the wide distribution of conformational disorder in nature. Condis crystals and glasses ("Con"formational "Dis"order) can be found in small and large molecule systems made of organic, inorganic and biological compounds. The condis state was newly discovered only four years ago. In this article over 100 examples are discussed as example of the condis state. In many cases the condis state was suggested for the first time. Motion in the Condensed State, Condis Crystals and their Relation to Plastic Crystals, Condis Crystals of Flexible Macromolecules, Condis Crystals and their Relation to Liquid Crystals, Condis Crystals of Stiff Macromolecules.
The IUTAM Symposium on Rheology of Bodies with Defects was held in Beijing in September, 1997. It was aimed at the development of Rheology in Solid Mechanics. Rheology is classified in Applied Mechanics Review under fluid mechanics, however, in its broadest content as was envisaged in its earlier days, it covers the whole spectrum of material behavior from elasticity, plasticity, and fluid mechanics to gas dynamics. It was thought of as a branch of continuum mechanics, but emphasized the physical aspects of different materials, and frequently proceeded from basic physical principles. As the temperature rises, the distinction between solid and fluid, and the distinction between their micro-mechanical movements, become blurred. The physical description of such materials and their movements must be based on the thermodynamic principles of state variable theory; the classical division between solid and fluid mechanics disappears. Under the classification adopted by Applied Mechanics Reviews, the subjects dealt with in this symposium come closer to viscoelasticity and viscoplasticity, especially close to the subdivision of creep dealing with creep rupture. The symposium focused at building a bridge between macroscopic and microscopic research on damage and fracture behavior of defective bodies made of metal, polymer, composite and other viscoelastic materials. Two different approaches are presented at the symposium. The first is a continuum damage theory for time-dependent evolution of defects at the macro/meso/microscopic levels. |
![]() ![]() You may like...
Corpus Linguistics and Statistics with R…
Guillaume Desagulier
Hardcover
R4,502
Discovery Miles 45 020
Protocol Specification, Testing and…
Piotr Dembinski, Marek Sredniawa
Hardcover
R5,850
Discovery Miles 58 500
Languages, Compilers and Run-Time…
Boleslaw K. Szymanski, Balaram Sinharoy
Hardcover
R4,552
Discovery Miles 45 520
Network+ Guide to Networks
Jill West, Jean Andrews, …
Paperback
|