![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Timber & wood processing
This unique book provides the first comprehensive overview of wood based bioenergy in the northern hardwood forests of the Eastern United States. This includes a holistic look at the topic of wood based bioenergy, as well as focused analyses of key topics. This book is relevant to engineers, project developers, foresters, economists, sociologists, environmental scientists and natural resource managers. Most chapters also provide practical hands-on advice for the practitioner, and provide a valuable resource for anyone who is considering developing a woody bioenergy project.
This proceedings volume presents new scientific works of the research workers and experts from the field of Wood Science & Fire. It looks into the properties of various tree species across the continents affecting the fire-technical properties of wood and wood-based materials, its modifications, fire-retardant methods and other technological processes that have an impact on wood ignition and burning. The results of these findings have a direct impact on Building Construction and Design describing the fire safety of wooden buildings, mainly large and multi-story ones. The results of these experiments and findings may be applied, or are directly implemented into Fire Science, Hazard Control, Building Safety which makes the application of wood and wood materials in buildings possible, while maintaining strict fire regulations. One part of the contributions focuses on the symbiosis of the material and the fire-fighting technologies. Wood burning has its own specific features, therefore, the fire protection technologies need to be updated regularly. It also includes the issue of the intervention of fire-fighting and rescue teams in the fires of wooden buildings. Presentations deal with the issue of forest fires influenced by the climate changes, relief, fuel models based on the type and the age of the forest stand.
This book provides a comprehensive description of traditional and innovative forest-based bioproducts, from pulp and paper, wood-based composites and wood fuels to chemicals and fiber-based composites. The descriptions of different types of forest-based bioproducts are supplemented by the environmental impacts involved in their processing, use, and end-of-life phase. Further, the possibility of reusing, recycling and upgrading bioproducts at the end of their projected life cycle is discussed. As the intensity of demand for forest biomass is currently changing, forest-based industries need to respond with innovative products, business models, marketing and management. As such, the book concludes with a chapter on the bioproducts business and these products' role in bioeconomies.
Wood-plastic composite (WPC) is a non-recyclable composite material lumber or timber made of recycled plastic and wood wastes which has become one of the most dynamic sectors of the plastics industry in this decade. It is used in numerous applications, such as, outdoor deck floors, railings, fences, landscaping timbers, park benches, window and door frames. This book starts with a brief glimpse at the basic structures and properties of WPCs. Aspects such as surface treatment, machinery used and testing types of WPCs are also covered. The following chapters of the book give a view of foam technology, flame retardant properties and colour retardant properties of WPCs. The way morphology affects or controls the physical and mechanical behaviours of the finished materials is discussed. Finally, the authors give an overview of the applications of wood-plastic composites in daily life. The book may serve as a source book for scientists wishing to work in this field.
This book is primarily a general text covering the whole sweep of the forest industries. The over-riding emphasis is on a clear, simple interpretation of the underlying science, demonstrating how such principles apply to processing operations. The book starts by considering the broad question what is wood? by looking at the biology, chemistry and physics of wood structure (first 4 chapters). This sets the scene. Next key chapters examine wood quality - explaining how and why wood quality can be so variable and implications for processing. Finally, in a series of chapters, various industrial processes are reviewed and interpreted. The 2nd Edition is a total revision. A few chapters remain relatively unchanged (no change for the sake of change). Many have been totally rewritten. All chapters have been written by specialists, but the presentation targets a generalist audience.
Latin America is a megadiverse territory hosting several hotspots of plant diversity and many types of forest biomes, ecosystems and climate types, from tropical rainforest to semi-arid woodlands. This combination of diverse forests and climates generates multiple responses to ecological changes affecting the structure and functioning of forest ecosystems. Recently, there have been major efforts to improve our understanding of such impacts on ecosystems processes. However, there is a dearth of studies focused on Latin-American forest ecosystems that could provide novel insights into the patterns and mechanisms of ecological processes in response to environmental stress. The abundance of "New World" tree species with dendrochronological potential constitutes an ideal opportunity to improve the ecological state of knowledge regarding these diverse forest types, which are often threatened by several impacts such as logging or conversion to agricultural lands. Thus, detailed information on the dendroecology of these species will improve our understanding of forests in the face of global change. Accordingly, this book identifies numerous relevant ecological processes and scales, ranging from tree species to populations and communities, and from both dendrochronological and dendroecological perspectives. It offers a valuable reference guide for the exploration of long-term ecological interactions between trees and their environmental conditions, and will foster further research and international projects on the continent and elsewhere.
This book provides basic information on the design of structures with tropical woods. It is intended primarily for teaching university- and college-level courses in structural design. It is also suitable as a reference material for practitioners. Although parts of the background material relate specifically to West and East Africa, the design principles apply to the whole of tropical Africa, Latin America and South Asia. The book is laced with ample illustrations including photographs of real life wood structures and structural elements across Africa that make for interesting reading. It has numerous manual and Excel spread sheet worked examples and review questions that can properly guide a first-time designer of wooden structural elements. A number of design problems are also solved using the FORTRAN programming language. Topics covered in the thirteen chapters of the book include a brief introduction to the book, the anatomy and physical properties of tropical woods; a bri ef review of the mechanical properties of wood, timber seasoning and preservation, uses of wood and wood products in construction; basic theory of structures, and structural load computations; design of wooden beams, solid and built-up wooden columns, wood connections and wooden trusses; as well as a brief introduction to the design of wooden bridges.
This volumedescribes fire behavior and fire protection of timbers in outdoors and indoors application mainly in construction industry. The Authors novel approach considers the relationship between various species and age of timbers and its fire behavior at different thermal and fire loads. Quantitative data of ignition speed and flame propagation as well as generation of heat, smoke and toxic products are discussed. Analysis of fire resistance of various types of building materials based on timber of different species as well asthe novel data on theeffect of natural and accelerated aging of timbers on its fire behavior are discussed. The main practical methods of fire protection of new and ancient timber buildings and structures to increase its fire resistance are considered. The book should be useful for a wide range of readers: chemists, physicists, material scientists, architects, engineers, constructors and restorers."
This monograph presents a state-of-the-art analysis of eco-friendly and aesthetic structures in wooden dome construction. The author demonstrates that the further development of wooden structures depends on both supplementing the testing of wood as a heterogeneous material, as well as on further improvement of fibrous structures with visco-elastic properties. The target audience primarily comprises research experts and practitioners in the field of building materials who are interested in innovative architecture.
The objectives of this book are twofold: 1. To provide a thorough examination of the materials science of cellulosic fibers with emphasis on the characterization of structure-property relations, and 2. To advance knowledge of how to best analyze cellulosic fibrous networks and composites, and, ultimately, engineer "novel" cellulose-based systems of superior performance and functionality. The design of new materials through the study of living systems, or bio-imitation, is burgeoning to become an established field, generally referred to as biomimetics. The latter, as with materials science, in general, prominently features multi-disciplinarity where new developments in mathematics, physics, chemistry and engineering continue to inspire novel areas of research and development. The book is structured in five chapters which provide a sequential treatment of the running theme: deformation mechanics and the physical, morphological and mechanical characterization of native cellulose fibers networks and composites. The heart of the book is Chapter 3, Damage Accumulation in Fibers, which treats the experimental methodology for fatigue testing of single fibers and the engendered results. In-depth examinations of the morphology, structure and chemical composition of native cellulose fibers, and the mechanics of deformation in these natural composite fibers are proffered in Chapters 1 and 2, respectively. The fourth chapter, Fractal Simulation of Crack Propagation, presents a fractal-based approach to modeling damage accumulation in materials. Fractals lend themselves well to modeling such randomly-oriented phenomena as crack propagation and fracture. The last chapter, Fibrous Structures: Networks and Composites, comprises analytical approaches for handling networks and composites.
This book shows how chemical modifications influence some properties of wood nanocomposites. It describes suitable and effective chemical modifications that strengthen the physico-mechanical, thermal and morphological properties of wood. The authors provide intuitive explanation of the various types of chemical modifications applied to polymer cell walls in wood. They emphasize the reaction changes in wood cell walls due to the chemical modifications. Increased mechanical strength, improved thermal stability as well as the efficient retardancy against fungi attack are described. This book concludes summarizing the potential applications of wood-based nanocomposites taking into account sustainability and economic aspects.
Applications of Soft Computing have recently increased and methodological development has been strong. The book is a collection of new interesting industrial applications introduced by several research groups and industrial partners. It describes the principles and results of industrial applications of Soft Computing methods and introduces new possibilities to gain technical and economic benefits by using this methodology. The book shows how fuzzy logic and neural networks have been used in the Finnish paper and metallurgical industries putting emphasis on processes, applications and technical and economic results.
Wood is one of the most intriguing structural materials and the only one that is truly renewable. Along with stone, wood is the oldest structural material on the planet and has been extensively used throughout human history. Due to its aesthetical value and positive environmental impact, wood has experienced a renaissance in construction. As a biodegradable, hygroscopic, non-isotropic material, wood presents special challenges for a professional and requires through knowledge ranging from biology to continuum mechanics. This state-of-the-art report reflects the current knowledge in the area of in situ assessment of the physical and mechanical properties of wood structures. Nondestructive, semi-destructive and destructive methods are described in a systematic manner where technology, equipment and limitations are discussed. Some of the discussed methods are used in other materials such as masonry and concrete. Most of the methods, however, are specific to wood and special qualifications are required to understand and apply these methods effectively. Existing methods are constantly improved and new methods are being developed. This report includes methods that are used in practice or have shown significant promise and have a body of knowledge that supports statements made in this report. This is a useable tool for professionals, researchers, educators and students
This book features in-depth and thorough coverage of Minimum Impact Mill Technologies which can meet the environmental challenges of the pulp and paper industry and also discusses Mills and Fiberlines that encompass "State-of-the-Art" technology and management practices. The minimum impact mill does not mean "zero effluent", nor is it exclusive to one bleaching concept. It is a much bigger concept which means that significant progress must be made in the following areas: Water Management, Internal Chemical Management, Energy Management, Control and Discharge of Non-Process Elements and Removal of Hazardous Pollutants. At the moment, there is no bleached kraft pulp mill operating with zero effluent. With the rise in environmental awareness due to the lobbying by environmental organizations and with increased government regulation there is now a trend towards sustainability in the pulp and paper industry. Sustainable pulp and paper manufacturing requires a holistic view of the manufacturing process. During the last decade, there have been revolutionary technical developments in pulping, bleaching and chemical recovery technology. These developments have made it possible to further reduce loads in effluents and airborne emissions. Thus, there has been a strong progress towards minimum impact mills in the pulp and paper industry. The minimum-impact mill is a holistic manufacturing concept that encompasses environmental management systems, compliance with environmental laws and regulations and manufacturing technologies.
In its Second Edition, Handbook of Pulping and Papermaking is a
comprehensive reference for industry and academia. The book offers
a concise yet thorough introduction to the process of papermaking
from the production of wood chips to the final testing and use of
the paper product. The author has updated the extensive
bibliography, providing the reader with easy access to the pulp and
paper literature. The book emphasizes principles and concepts
behind papermaking, detailing both the physical and chemical
processes.
In the last quarter century, delamination has come to mean more than just a failure in adhesion between layers of bonded composite plies that might affect their load-bearing capacity. Ever-increasing computer power has meant that we can now detect and analyze delamination between, for example, cell walls in solid wood. This fast-moving and critically important field of study is covered in a book that provides everyone from manufacturers to research scientists the state of the art in wood delamination studies. Divided into three sections, the book first details the general aspects of the subject, from basic information including terminology, to the theoretical basis for the evaluation of delamination. A settled terminology in this subject area is a first key goal of the book, as the terms which describe delamination in wood and wood-based composites are numerous and often confusing. The second section examines different and highly specialized methods for delamination detection such as confocal laser scanning microscopy, light microscopy, scanning electron microscopy and ultrasonics. Ways in which NDE (non-destructive evaluation) can be employed to detect and locate defects are also covered. The book's final section focuses on the practical aspects of this defect in a wide range of wood products covering the spectrum from trees, logs, laminated panels and glued laminated timbers to parquet floors. Intended as a primary reference, this book covers everything from the microscopic, anatomical level of delamination within solid wood sections to an examination of the interface of wood and its surface coatings. It provides readers with the perspective of industry as well as laboratory and is thus a highly practical sourcebook for wood engineers working in manufacturing as well as a comprehensively referenced text for materials scientists wrestling with the theory underlying the subject.
The second edition has been completely revised and has incorporated significant changes that have occurred in wood anatomy over the past years. Richly illustrated with light and scanning electron micrographs, Comparative Wood Anatomy clearly introduces dicotyledon wood in terms of cell types and their variations, pertinent literature, taxonomic distribution of characteristics, terminology, methods for preparation and ecological and evolutionary significance of. wood features. From reviews of the previous edition: "In synthesis, this book presents itself as an immensely valuable exposé on comparative wood anatomy and its bearing on systematic, ecological and evolutionary aspects of dicotyledon wood." (Wood Science and Technology) "This book is recommended to all who are interested in a modern, stimulating, competent, and well illustrated work." (Holzforschung)
The effective and lasting treatment of wood against insect and
fungal attack grows in importance as forestry reserves decline and
as cost increases feed through to the building trade and other
timber users. At the same time, environmental pressures bear ever
more heavily on the types of chemicals and processes employed in
the preservation industry. This book records the proceedings of an
international meeting arranged to address such issues. The 15
principal chapters are based upon papers by invited experts to a
combined audience of preservation practitioners and
non-specialists. The chapter sequence follows the logical pattern
of the conference, beginning with a review of the biological
threats to be contended. There follow historical and
state-of-the-art accounts of aqueous, organic solvent and
non-liquid treatment processes. Preservatives increasingly must
meet international product and environmental standards, which along
with the related test, analytical and quality control procedures,
are described and referenced. Contributors from the wood
preservation industry address a range of needs associated with
cost, safety and performance efficacy, not neglecting a search for
a better understanding of the finer chemical mechanisms involved.
Remaining problems are outlined in strategies for further research
and development.
This four volume set covers the entire spectrum of pulp and paper chemistry and technology from starting material to processes and products including market demands. This work is essential for all students of wood science and a useful reference for those working in the pulp and paper industry or on the chemistry of renewable resources. This volume examines the physical properties of paper and modern demands on this versatile material. The book presents fundamental definitions of fibre networks and their structure, physical properties of the paper and their development during pressing and drying, interactions with moisture and its affect on mechanical properties, interactions between light and fibrous materials and the determination of optical properties of the paper, physical action of dry-strength and wet-strength chemicals, physical properties of the paper surface with special emphasis on printing and print quality, overview of packaging materials and the demands on paper from a packaging materials perspective, laminate theories for papermakers and theoretical models of paper for converting and end-uses.
In the course of almost 40 years various researchers, at what used to be TNO's Forest Products Research Institute, currently the TNO Centre for Timber Research, conducted studies into the physical properties of wood. The first studies and calculations were carried out by Mr E. Prochaska, after which Mrs G.M.C. Koning-Vrolijk continued the work. Indeed Mrs Koning-Vrolijk wrote the Institute's first publication (1962), an Eng lish version of which was published in 1963 (3) on the occasion of FAO and IUFRO Conferences held in the United States. Thereafter, the Institute's work was carried on by Mr A. Govers, Mr J.F. Rijsdijk and Mr P.B. Laming. Their research resulted in a second publication (Laming 1978) in which not only the mechanical properties but also the physical properties of 48 wood species were described. During the bulk of this period technical support was provided by Mr J.C. Verwijs and more recently by Mr L. van Brussel. After extensive studies, the Belgian Timber Information Institute also adopted the same research methods as TNO in order to obtain physical data on a number of wood species which were of commercial interest to the Belgian market but which had not been covered in TNO's studies. The Belgian Timber Information Institute's suggestion to include their research results, on a total of 17 wood species in this publication, .was therefore gratefully accepted."
This four volume set covers the entire spectrum of pulp and paper chemistry and technology from starting material to processes and products including market demands. This work is essential for all students of wood science and a useful reference for those working in the pulp and paper industry or on the chemistry of renewable resources. Volume 3 provides an overview of paper production and the ways in which the chemistry of starting materials and processes influence its quality and properties. The work treats fundamental properties of the fibre wall and the consolidation of fibres during pressing and drying, surface chemistry of fibres and their influence on the interaction between fibres/paper and other materials, mechanisms behind the adsorption of polyelectrolytes to fibres and fillers, acid and alkaline sizing of paper, basic fluid mechanical behavior of fibre suspensions, web forming, web pressing and web drying in a modern paper machine, calandering and coating of paper.
This collection of comprehensive reviews describes the present knowledge of the enzyme mechanisms involved in the biodegradation of wood and wood components, cellulose, hemicelluloses and lignin by both fungi and bacteria. The extensive knowledge, presented in this volume, was developed in laboratories world-wide over the last few decades and constitutes the foundation for present and future biotechnology in the pulp and paper industry.
This volume presents a history of heavy timber construction (HTC) in the United States, chronicling nearly two centuries of building history, from inception to a detailed evaluation of one of the best surviving examples of the type, with an emphasis on fire resistance. The book does not limit itself in scope to serving only as a common history. Rather, it provides critical analysis of HTC in terms of construction methods, design, technical specifications, and historical performance under fire conditions. As such, this book provides readers with a truly comprehensive understanding and exploration of heavy timber construction in the United States and its performance under fire conditions.
This four volume set covers the entire spectrum of pulp and paper chemistry and technology from starting material to processes and products including market demands. This work is essential for all students of wood science and a useful reference for those working in the pulp and paper industry or on the chemistry of renewable resources. Volume 2 focuses on creating an understanding of the chemical and technical processes involved in the production of pulp. The work treats wood handling, i.e. barking, chipping , storage and screening processes, chemistry and technology during mechanical and chemical pulp production, including pulping and bleaching chemistry and technology, production of bleaching chemicals at the mill, recovery processes, including the treatment and burning of black liquor and the white liquor preparation plant, paper recycling processes, changes in structure and properties of wood polymers and pulps in the pulping process line, description of the equipment and processes involved in the manufacturing of pulp, pulp characterization, including methods available to evaluate pulp properties, end-product requirements.
This four volume set covers the entire spectrum of pulp and paper chemistry and technology from starting material to processes and products including market demands. This work is essential for all students of wood science and a useful reference for those working in the pulp and paper industry or on the chemistry of renewable resources. Volume 1 provides a survey of the biological and chemical structure of wood as well as an introduction to the chemical reactions used during pulp production processes. The work presents the different raw materials used for pulp production, the macroscopic and morphological construction of wood and related characterization methods, the chemical structure and arrangement of the wood polymers and extractives, biosynthesis of wood polymers, carbohydrate and lignin analysis, reactions of wood polymers in mechanical and chemical pulping and bleaching processes, biotechnical processes of relevance for the pulp and paper industry, different types of microorganisms and their modes of interaction with wood, the impact of chemical and microbiological processes on the hierarchical structure of wood and pulp. |
![]() ![]() You may like...
|