![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > WAP (wireless) technology
Comprehensive and timely, Cloud Computing: Concepts and Technologies offers a thorough and detailed description of cloud computing concepts, architectures, and technologies, along with guidance on the best ways to understand and implement them. It covers the multi-core architectures, distributed and parallel computing models, virtualization, cloud developments, workload and Service-Level-Agreements (SLA) in cloud, workload management. Further, resource management issues in cloud with regard to resource provisioning, resource allocation, resource mapping and resource adaptation, ethical, non-ethical and security issues in cloud are followed by discussion of open challenges and future directions. This book gives students a comprehensive overview of the latest technologies and guidance on cloud computing, and is ideal for those studying the subject in specific modules or advanced courses. It is designed in twelve chapters followed by laboratory setups and experiments. Each chapter has multiple choice questions with answers, as well as review questions and critical thinking questions. The chapters are practically-focused, meaning that the information will also be relevant and useful for professionals wanting an overview of the topic.
This book provides the state-of-the-art development on security and privacy for fog/edge computing, together with their system architectural support and applications. This book is organized into five parts with a total of 15 chapters. Each area corresponds to an important snapshot. The first part of this book presents an overview of fog/edge computing, focusing on its relationship with cloud technology and the future with the use of 5G communication. Several applications of edge computing are discussed. The second part of this book considers several security issues in fog/edge computing, including the secure storage and search services, collaborative intrusion detection method on IoT-fog computing, and the feasibility of deploying Byzantine agreement protocols in untrusted environments. The third part of this book studies the privacy issues in fog/edge computing. It first investigates the unique privacy challenges in fog/edge computing, and then discusses a privacy-preserving framework for the edge-based video analysis, a popular machine learning application on fog/edge. This book also covers the security architectural design of fog/edge computing, including a comprehensive overview of vulnerabilities in fog/edge computing within multiple architectural levels, the security and intelligent management, the implementation of network-function-virtualization-enabled multicasting in part four. It explains how to use the blockchain to realize security services. The last part of this book surveys applications of fog/edge computing, including the fog/edge computing in Industrial IoT, edge-based augmented reality, data streaming in fog/edge computing, and the blockchain-based application for edge-IoT. This book is designed for academics, researchers and government officials, working in the field of fog/edge computing and cloud computing. Practitioners, and business organizations (e.g., executives, system designers, and marketing professionals), who conduct teaching, research, decision making, and designing fog/edge technology will also benefit from this book The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, and information systems, but also applies to students in business, education, and economics, who would benefit from the information, models, and case studies therein.
The book offers unique insight into the modern world of wireless communication that included 5G generation, implementation in Internet of Things (IoT), and emerging biomedical applications. To meet different design requirements, gaining perspective on systems is important. Written by international experts in industry and academia, the intended audience is practicing engineers with some electronics background. It presents the latest research and practices in wireless communication, as industry prepares for the next evolution towards a trillion interconnected devices. The text further explains how modern RF wireless systems may handle such a large number of wireless devices. Covers modern wireless technologies (5G, IoT), and emerging biomedical applications Discusses novel RF systems, CMOS low power circuit implementation, antennae arrays, circuits for medical imaging, and many other emerging technologies in wireless co-space. Written by a mixture of top industrial experts and key academic professors.
Multirate Signal processing can improve system performance and reduce costs in applications ranging from laboratory instruments, cable modems, wireless systems, satellites, Radar, Sonar, and consumer entertainment products. This second edition continues to offer a systematic, clear, and intuitive introduction to multirate signal processing for working engineers and system designers. Significant new material and fresh concepts, including Green Signal Processing techniques have been introduced. The author uses extensive examples and figures to illustrate a wide range of multirate techniques, from basic resampling to leading-edge cascade and multi-stage filter structures. Along the way he draws on extensive research and consulting experience to introduce processing "tricks" shown to maximize performance and efficiency. Coverage includes: * Effect of sampling and resampling in time and frequency domains * Relationships between FIR filter specifications and filter length (# of taps) * Window design and equal-ripple (Remez) design techniques * Square-Root Nyquist and Half-band Filters including new enhancements * Polyphase FIR filters: up-sampling, down-sampling * Polyphase M-path analysis and synthesis channelizers and cascade pairs * Polyphase interpolators for arbitrary sample rate changes * Dyadic half-band filters, quadrature mirror filters * Channel banks for multiple arbitrary bandwidths and center frequencies * Comprehensive coverage of recursive all-pass filters and channelizers, non-uniform and uniform phase, mixed recursive and non-recursive * Comparisons with traditional DSP designs * Extensive applications coverage throughout
Nonfunctional Requirements in Mobile Application Development is an empirical study that investigates how nonfunctional requirements--as compared with functional requirements--are treated by the software engineers during mobile application development. The book empirically analyzes the contribution of nonfunctional requirements to project parameters such as cost, time, and quality. Such parameters are of prime interest as they determine the survival of organizations in highly dynamic environments. The impact of nonfunctional requirements on project success is analyzed through surveys and case studies, both individually and relative to each other. Sources for data collection include industry, academia, and literature. The book also empirically studies the impact of nonfunctional requirements on the overall business success of both the software development firm and the software procuring firm. Project success is examined to determine if it leads to business success. The book provides rich empirical evidence to place nonfunctional requirements on par with functional requirements to achieve business success in highly competitive markets. This work enhances the body of knowledge through multiple empirical research methods including surveys, case studies, and experimentation to study software engineers' focus on nonfunctional requirements at both project and business levels. The book can guide both computer scientists and business managers in devising theoretical and technical solutions for software release planning to achieve business success.
The book introduces optical wave propagation in the irregular turbulent atmosphere and the relations to laser beam and LIDAR applications for both optical communication and imaging. It examines atmosphere fundamentals, structure, and content. It explains specific situations occurring in the irregular atmosphere and for specific natural phenomena that affect optical ray and laser beam propagation. It emphasizes how to use LIDAR to investigate atmospheric phenomena and predict primary parameters of the irregular turbulent atmosphere and suggests what kinds of optical devices to operate in different atmospheric situations to minimize the deleterious effects of natural atmospheric phenomena.
Directional antenna technologies have made significant advancements in the last decade. These advances have opened the door to many exciting new design opportunities for wireless networks to enhance quality of service (QoS), performance, and network capacity. In this book, experts from around the world present the latest research and development in wireless networks with directional antennas. Their contributed chapters provide detailed coverage of the models, algorithms, protocols, and applications of wireless networks with various types of directional antennas operating at different frequency bands. Wireless Network Performance Enhancement via Directional Antennas: Models, Protocols, and Systems identifies several interesting research problems in this important field, providing an opportunity to learn about solid solutions to these issues. It also looks at a number of practical hardware designs for the deployment of next-generation antennas, as well as efficient network protocols for exploitation of directional communications. The book is organized into six sections: Directional Antennas - covers the hardware design of different types of antennas Directional MAC - focuses on the principles of designing medium access control (MAC) protocols for directional networks Millimeter Wave - explores different design aspects of millimeter wave (mm-Wave) systems, which operate in higher-frequency bands (such as 60 GHz) MIMO - explains how to establish a multiple-input, multiple-output (MIMO) antenna system and describes how it operates in a cognitive radio network Advanced Topics - looks at additional topics such as beamforming in cognitive radio networks, multicast algorithm development, network topology management for connectivity, and sensor network lifetime issues Applications - illustrates some important applications, such as military networks and airborne networking, that benefit from directional networking designs With this book, researchers and engineers will be well-equipped to advance the research and development in this important field. If you're new to this field, you will find this book to be a valuable reference on basic directional networking principles, engineering design, and challenges.
First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.
The book addresses the need to investigate new approaches to lower energy requirement in multiple application areas and serves as a guide into emerging circuit technologies. It explores revolutionary device concepts, sensors, and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation. The book responds to the need to develop disruptive new system architecutres, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems. Features Discusses unique technologies and material only available in specialized journal and conferences Covers emerging applications areas, such as ultra low power communications, emerging bio-electronics, and operation in extreme environments Explores broad circuit operation, ex. analog, RF, memory, and digital circuits Contains practical applications in the engineering field, as well as graduate studies Written by international experts from both academia and industry
This book focuses on the most critical technical aspects of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. It covers the smart city concept and architecture and explains how V2V and V2I fit into it. It describes the wireless communication protocols for V2V and V2I. It then explains the hardware design process for vehicle communication transceiver and antenna systems. It explains next-generation wireless technologies and their requirements for vehicle communication protocols. Case studies provide the latest V2V and V2I commercial design details. Finally, it describes how to implement vehicle communication protocol from practical hardware design angle.
The topics addressed in this book are crucial for both the academic community and industry, since the vehicular network has become an essential building block for intelligent transportation systems. The systematic principle of this book provides valuable guidance on the deployment and implementation of V2X-enabled road-safety applications. In addition, this book carries out structured technologies from the MAC layer to the link and network layer, which can provide a general introduction for interested readers with a comprehensive understanding of applying vehicular networks in enhancing road safety, and offers a systematized view for researchers and practitioners in the field of vehicular networks to help them optimize and improve the desired vehicular communication systems. Road safety has always been the first priority for daily commuters on the road. Vehicular networks can be an effective solution to enhance road safety, via which vehicles can exchange cooperative awareness messages rapidly, contributing to better situation awareness and maneuvering cooperation. However, with the fast-changing network topology, intermittent wireless link, and dynamic traffic density, it is challenging to achieve satisfying network performance. This book introduces the background of vehicular networks, provides a comprehensive overview of networking techniques in supporting road-safety applications, states the technical motivations per the MAC, link, and network layer, and proposes/designs vehicular networking technologies at the corresponding layer respectively to guarantee low-latency and reliable V2X communications for road-safety applications. By extending the proposed networking technologies to support all types of vehicular services, this book also outlines open issues and research directions in future 5G and beyond vehicular networks.
The design and development of low radar cross section (RCS) phased array has been a challenging subject in stealth technology. The frequency selective surface elements act as absorbers in specific frequency band and facilitate gain enhancement and reduction of antenna RCS. This book presents a comprehensive EM design and analysis of such low-profile patch arrays with high impedance surface-based ground plane. It explains how to determine radiation mode RCS of low-profile antenna arrays with arbitrary configurations. Detailed descriptions of design, workflow of determining radiation and scattering behavior of antenna arrays have been supported with schematics, tables, and illustrations. Aimed at engineers and researchers for RCS, antenna engineers and graduate students in electrical engineering and electromagnetics, it * Discusses both radiation and scattering features of both planar and conformal HIS-based low profile antennas * Describes the theoretical background, design, simulations and analysis of low RCS phased array in detail * Presents the physics behind the resultant radiation and scattering characteristics of designed antenna array * Helps readers understand design and analysis of low RCS antenna array without any degradation in its radiation performance * Includes figures, schematics and illustrations to provide comprehensive descriptions of both radiation and scattering characteristics of phased arrays of different configurations
This up-to-date reference discusses important concepts of vehicular communication in intelligent transportation systems. Augmented Intelligence Toward Smart Vehicular Applications begins by discussing key objectives of intelligent transport systems and vehicular ad-hoc networks (VANETs). It then goes on to discuss challenges, applications and future trends in VANETs. The text focuses on the organization of artificial intelligence (AI) and aspects of deep learning algorithms, particularly multimodal transport. This book will serve as an ideal reference for graduate students and academic researchers in the field of electrical engineering, electronics and communication engineering and transportation engineering. Features In-depth coverage of Internet of Things (IoT) in vehicular applications Discussion on nn-vehicle sensor networks Implementation of mobile IP and migration of IPv6 Focus on the need of AI in smart vehicular applications Discussions on advanced concepts in the field of intelligent transport systems
This textbook presents computer networks to electrical and computer engineering students in a manner that is clearer, more interesting, and easier to understand than other texts. All principles are presented in a lucid, logical, step-by-step manner. As much as possible, the authors avoid wordiness and giving too much detail that could hide concepts and impede overall understanding of the material. Ten review questions in the form of multiple-choice objective items are provided at the end of each chapter with answers. The review questions are intended to cover the little "tricks" which the examples and end-of-chapter problems may not cover. They serve as a self-test device and help students determine how well they have mastered the chapter.
The International Conference on Communications, Management, and Information Technology (ICCMIT'16) provides a discussion forum for scientists, engineers, educators and students about the latest discoveries and realizations in the foundations, theory, models and applications of systems inspired on nature, using computational intelligence methodologies, as well as in emerging areas related to the three tracks of the conference: Communication Engineering, Knowledge, and Information Technology. The best 25 papers to be included in the book will be carefully reviewed and selected from numerous submissions, then revised and expanded to provide deeper insight into trends shaping future ICT.
The accurate design of earth-space systems requires a comprehensive understanding of the various propagation media and phenomena that differ depending on frequencies and types of applications. The choice of the relevant channel models is crucial in the design process and constitutes a key step in performance evaluation and testing of earth-space systems. The subject of this book is built around the two characteristic cases of satellite systems: fixed satellites and mobile satellite systems. Radio Wave Propagation and Channel Modeling for Earth-Space Systems discusses the state of the art in channel modeling and characterization of next-generation fixed multiple-antennas and mobile satellite systems, as well as propagation phenomena and fade mitigation techniques. The frequencies of interest range from 100 MHz to 100 GHz (from VHF to W band), whereas the use of optical free-space communications is envisaged. Examining recent research advances in space-time tropospheric propagation fields and optical satellite communication channel models, the book covers land mobile multiple antennas satellite- issues and relative propagation campaigns and stratospheric channel models for various applications and frequencies. It also presents research and well-accepted satellite community results for land mobile satellite and tropospheric attenuation time-series single link and field synthesizers. The book examines aeronautical communications channel characteristics and modeling, relative radio wave propagation campaigns, and stratospheric channel model for various applications and frequencies. Propagation effects on satellite navigation systems and the corresponding models are also covered.
The Internet of Things (IoT) has attracted strong interest from both academia and industry. Unfortunately, it has also attracted the attention of hackers. Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations brings together some of the top IoT security experts from around the world who contribute their knowledge regarding different IoT security aspects. It answers the question "How do we use efficient algorithms, models, and implementations to cover the four important aspects of IoT security, i.e., confidentiality, authentication, integrity, and availability?" The book consists of five parts covering attacks and threats, privacy preservation, trust and authentication, IoT data security, and social awareness. The first part introduces all types of IoT attacks and threats and demonstrates the principle of countermeasures against those attacks. It provides detailed introductions to specific attacks such as malware propagation and Sybil attacks. The second part addresses privacy-preservation issues related to the collection and distribution of data, including medical records. The author uses smart buildings as an example to discuss privacy-protection solutions. The third part describes different types of trust models in the IoT infrastructure, discusses access control to IoT data, and provides a survey of IoT authentication issues. The fourth part emphasizes security issues during IoT data computation. It introduces computational security issues in IoT data processing, security design in time series data aggregation, key generation for data transmission, and concrete security protocols during data access. The fifth and final part considers policy and human behavioral features and covers social-context-based privacy and trust design in IoT platforms as well as policy-based informed consent in the IoT.
Wireless sensor networks (WSNs) are a special class of ad hoc network in which network nodes composed of tiny sensors pass data such as temperature, pressure, and humidity through the network to a central location. Wireless sensor multimedia networks (WSMNs) are a special category of WSNs in which the sensor nodes are small cameras and microphones that can send voice, image, or video data through the network. This book presents the latest advances and research in WSMN architecture, algorithms, and protocols. WSMNs are attracting great attention from academia and industry due to the variety of applications in which they can be deployed. Wireless Sensor Multimedia Networks: Architectures, Protocols, and Applications explores the many benefits of WSMNs and the variety of applications in which they can be used-surveillance, traffic monitoring, advanced healthcare (blood pressure and heart rate monitoring), habitat monitoring, and localization services (finding missing children or wanted criminals). The contributed chapters in this book explore current research into key areas such as New quality-of-service-aware routing protocols that support a high data rate in WSMNs Cognitive radio capability that increases efficiency of spectrum utilization and decreases the probability of collision and contention Multimedia streaming optimization techniques New security schemes for real-time video streaming Various ways of optimizing power consumption in WSMNs Wireless Sensor Multimedia Networks: Architectures, Protocols, and Applications discusses open research issues and future trends in WSMNs. With this book, academic researchers, engineers, and graduate students will be well-equipped to advance the research in this emerging field.
Printed antennas have become an integral part of next-generation wireless communications and have been found to be commonly used to improve system capacity, data rate, reliability, etc. This book covers theory, design techniques, and the chronological regression of the printed antennas for various applications. This book will provide readers with the basic conceptual knowledge about antennas along with advanced techniques for antenna design. It covers a variety of analytical techniques and their CAD applications and discusses new applications of printed antenna technology such as sensing. The authors also present special reconfigurable antennas such as ME dipole, polarization, feeding, and DGS. The book will be useful to students as an introduction to design and applications of antennas. Additionally, experienced researchers in this field will find this book a ready reference and benefit from the techniques of research in printed antennas included in this book. Following are some of the salient features of this book: Covers a variety of analytical techniques and their CAD applications Discusses new applications of printed antenna technology such as sensing Examines the state of design techniques of printed antenna Presents special reconfigurable antennas such as ME dipole, polarization, feeding, and DGS
Data storage, processing, and management at remote location over dynamic networks is the most challenging task in cloud networks. Users' expectations are very high for data accuracy, reliability, accessibility, and availability in pervasive cloud environment. It was the core motivation for the Cloud Networks Internet of Things (CNIoT). The exponential growth of the networks and data management in CNIoT must be implemented in fast growing service sectors such as logistic and enterprise management. The network based IoT works as a bridge to fill the gap between IT and cloud networks, where data is easily accessible and available. This book provides a framework for the next generation of cloud networks, which is the emerging part of 5G partnership projects. This contributed book has following salient features, A cloud-based next generation networking technologies. Cloud-based IoT and mobility management technology. The proposed book is a reference for research scholars and course supplement for cloud-IoT related subjects such as distributed networks in computer/ electrical engineering. Sanjay Kumar Biswash is working as an Assistant professor in NIIT University, India. He held Research Scientist position, Institute of Cybernetics, National Research Tomsk Polytechnic University, Russia. He was PDF at LNCC, Brazil and SDSU, USA. He was a visiting researcher to the UC, Portugal. Sourav Kanti Addya is working as an Assistant professor in NITK, Surathkal, India. He was a PDF at IIT Kharagpur, India. He was a visiting scholar at SDSU, USA. He obtained national level GATE scholarship. He is a member of IEEE, ACM.
The steady evolution of wireless communication technologies continues to pave the way for the implementation of innovative services and devices in modern vehicles. These include analog and digital audio broadcasting radio, satellite radio, GPS, cell phones, and short range communication devices. Such applications require the use multiple antennas operating in different frequency ranges. Automotive Antenna Design and Applications thoroughly examines traditional and new advanced automotive antennas, including the principles, designs, and techniques used to reduce antenna dimensions without significant degradation of communication quality. The contents of this book are based on cutting-edge data collected from numerous technical papers, patents, and patent applications. It presents an overview of many commercially available automotive antennas and covers features that have become standard in automotive applications, such as printed-on car glass antennas, reduced-size helical antennas, multiband compact, printed-on dielectric and patch designs in a single package. Includes simulation examples of antenna parameters that significantly speed up the design process using software packages such as FEKO, NEC, IE3D, and Genesys Highlighting the practical aspects of antenna design, the authors present passive and active designs and describe the entire design process, including antenna simulation, prototype sample fabrication, and laboratory test measurements. The book also covers the production adjustments that can result from the demands of the real car environment. The presentation of numerous examples of passive and active automotive antennas greatly enhances this reference s value to professionals, students, and anyone else working in the ever-evolving field of antenna design and application.
Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.
This book explains the 3GPP technical specifications for the upcoming 5G Internet of Things (IoT) technology based on latest release which is Release 15. It details the LTE protocol stack of an IoT device, architecture and framework, how they are functioning and communicate with cellular infrastructure, and supported features and capability. NB-IoT is designed to connect a large number of devices in a wide range of application domains forming so-called Internet of Things (IoT). Connected devices are to communicate through cellular infrastructure. This technology is new within the 3GPP specifications and is part of upcoming new wireless technology known as 5G. Table of Contents Preface. Acknowledgments. Author. List of Abbreviations. 1. Internet of Things. 2. 4G and 5G Systems. 3. Radio Resource Control Sublayer. 4. Packet Data Convergence Protocol Sublayer. 5. Radio Link Control Sublayer. 6. Medium Access Control Sublayer. 7. Physical Sublayer. 8. Quality of Service Architecture. 9. Use Cases and Deployment. References. Index.
While there are many scholarly books and papers that cover the technical issues behind the public switched telephone network (PSTN) migration, few books describe exactly how to manage the migration process economically. Filling this need, Managing the PSTN Transformation: A Blueprint for a Successful Migration to IP-Based Networks reflects the latest understanding of the challenges behind migrating customers from the old PSTN network to an IP infrastructure. The IP transformation blueprint described in this book is not a theoretical cookbook that describes how this could work. Instead, the book presents a blueprint that is the product of countless hours of work by hundreds of individuals at Deutsche Telekom (DT) over almost two years. The book presents insights gained as the DT team migrated the entire public switched telephone network in Macedonia to an Internet protocol-based platform. It illustrates the various types of challenges the team faced in integrating complex systems, including flight control at their airports, alarms for fire and police response, and large enterprise customers. Detailing new conceptual approaches and the best practices developed for ensuring knowledge transfer within the DT group, the book presents the information in a step-by-step manner to enable you to easily adapt the blueprint for particular service provider requirements. Since successful migration relies on key aspects beyond the technological side, this work provides you with a product portfolio roadmap, migration plan, IT roadmap, business case framework, and a go-to-market plan. Although the book discusses the experiences of the Deutsche Telekom team as they worked to migrate the telephone network in Macedonia to an Internet protocol-based platform, the IP transformation blueprint and lessons learned presented can easily be scaled up and applied to any market around the world.
State-of-the-art, flat structures called metasurfaces can filter and steer light and sound, render an object completely invisible to electromagnetic waves, and much more. They can deliver automation, remote operation, and advanced performance to a wide variety of existing systems, with applications in communications, medical imaging, sensing, and security. However, for non-specialists, individual metasurfaces are currently restricted to limited reusability and accessibility. This book brings together various scientific disciplines with the aim of outlining a programmable 'plug-and-play' metasurface. The book focuses on a recently proposed platform - known as the HyperSurface - that provides many electromagnetic functions of metasurfaces in a single structure, which can be controlled and reconfigured by software. This revolutionary approach paves the way for new opportunities in wireless communications and programmable wireless environments: HyperSurfaces could link networks with objects and physical environments and create smarter systems that are far more responsive to user demands. Walls that absorb radiation or block digital eavesdropping, and wireless, long-distance charging of devices are among the many possibilities. The book aspires to provide the foundational knowledge for creating an Internet of Materials, enabling smart environments at any scale - from indoor wireless communications to medical imaging equipment. Although the set of disciplines involved covers a considerable span, we hope that the material will benefit experts and students alike. |
You may like...
Collaborative Systems for Smart…
Luis M. Camarinha-Matos, Hamideh Afsarmanesh
Hardcover
R2,809
Discovery Miles 28 090
Distributed User Interfaces - Designing…
Jose A. Gallud, Ricardo Tesoriero, …
Hardcover
R2,658
Discovery Miles 26 580
Introduction to the Functional…
Peter Kopietz, Lorenz Bartosch, …
Hardcover
R2,398
Discovery Miles 23 980
Wireless World in 2050 and Beyond: A…
Ramjee Prasad, Sudhir Dixit
Hardcover
Distributions - Theory and Applications
J. J. Duistermaat, Johan A.C. Kolk
Hardcover
R2,674
Discovery Miles 26 740
|