![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment
The purpose of this book is to bring together under one cover the principles of groundwater engineering. The concise format has produced a handy, comprehensive manual for professionals working in the groundwater industry. The author places emphasis on the application of theory and practical aspects of groundwater engineering. Well-cited references throughout the text guide you through the technology, scientific principles, and theoretical background of groundwater engineering. Exhaustive appendices contain quantitative data necessary for in-groundwater flow and contaminant migration equations. Principles of Groundwater Engineering is the state-of-the-art book that bridges the gap between groundwater theory and groundwater problem solving.
Industrial processes, in particular in chemical and pharmaceutical production, almost always result in waste or side products that require further treatment. Both environmentally benign and least-cost processes are needed, while also allowing the best possible recycling of material. Apart from chemical and mechanical treatment, microbe-based biological methods have become a prime choice for efficient and sustainable wastewater processing. This concise introduction to the fundamentals of biological treatment of wastewater describes how to model and integrate biological steps into industrial processes. It first covers the chemical, physical and biological basics before taking the reader on to applications, technologies, equipment and process specifics, with modeling methods a prominent feature throughout the text. From the contents: Introduction Wastewater Characteristics Microbial Metabolism Determination of Stoichiometric Equations for Catabolism and Anabolism Measurements of Mass Transfer and Respiration Rates Kinetics Aerobic Treatment of Wastewater Loaded with Dissolved Organics Nitrogen Removal Biological Phosphorus Removal Biological Wastewater Treatment with Nitrogen and Phosphorus Removal Anaerobic Treatment of Wastewater Loaded with Dissolved Organics Membrane Technology in Biological Wastewater Treatment Assessment and Selection of Aeration Systems Simple Models for Biofilm Reactors Modeling Activated Sludge Processes Processing of Water, Recovering of Materials and Treatment of Wastewater Integrated into the Production Process
This new manual is an indispensable working lab guide and reference for water/wastewater quality analysis. Based on procedures from "Standard Methods" and "Methods for Chemical Analysis of Water and Waste (EPA)," and other pertinent references the Water and Wastewater Examination Manual is an excellent complement to these references-that you will want to keep at your fingertips. Written especially for use by water quality laboratory technicians and water/wastewater operators, managers and supervisors-who will use this practical manual every day. Procedures are included for parameters frequently used in water quality analysis.
In The Netherlands, Belgium and other European countries, manganese is removed by conventional groundwater treatment with aeration and rapid (sand) filtration. Such a treatment process is easy to operate, cost effective and sustainable, because it does not make use of strong oxidants such as O3, Cl2, ClO2 and KMnO4 with the associated risk of by-product formation and over or under dosing. However, application of aeration-filtration is also facing drawbacks, especially the long ripening time of filter media. Due to the long ripening time, water companies have to waste large volumes of treated water, making this process less sustainable. Also, costs associated with filter media ripening (man power, electricity, operational and analysis costs) are high. Therefore decreasing the filter ripening time, regarding manganese removal is a big issue. Although already extended research has been carried out into manganese removal, the controlling mechanisms, especially of the start up face of filter media ripening, are not fully understood yet. The emphasis of this thesis is to provide a better understanding of the mechanisms involved in the ripening of virgin filter media, regarding manganese removal and how to shorten or completely eliminate the long ripening period of filters with virgin material. This thesis therefore highlights the role of the formation of a manganese oxide coating on virgin filter media. Characterization and identification revealed that the responsible manganese oxide for an effective manganese removal was Birnessite. It was found that Birnessite, formed at the beginning of the ripening process was of a biological origin. Based on the knowledge that manganese removal in conventional groundwater treatment is initiated biologically, long ripening times may be reduced by creating conditions favouring the growth of manganese oxidizing bacteria, e.g., by limiting the back wash frequency and / or intensity. Additionally, this thesis also shows that the use of freshly prepared manganese oxide, containing Birnessite, can completely eliminate filter media ripening time.
Incentives in Water Quality Management explores the role of effluent charges in France and the Ruhr area of the federal republic of Germany by delving into both regulatory and economic systems that are utilised in the water quality management of these two areas. Originally published in 1981, these studies place an emphasis on the necessity of legislation in effective water quality management whilst attempting to create a complete picture of the water quality management systems in place in France and the Ruhr area. This title will be of interest to students of Environmental Studies.
Reservoir operation is a multi-objective optimization problem, and is traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation, named nested DP (nDP), nested SDP (nSDP), nested reinforcement learning (nRL) and their multi-objective (MO) variants, correspondingly MOnDP, MOnSDP and MOnRL. The idea is to include a nested optimization algorithm into each state transition, which reduces the initial problem dimension and alleviates the curse of dimensionality. These algorithms can solve multi-objective optimization problems, without significantly increasing the algorithm complexity or the computational expenses. It can additionally handle dense and irregular variable discretization. All algorithms are coded in Java and were tested on the case study of the Knezevo reservoir in the Republic of Macedonia. Nested optimization algorithms are embedded in a cloud application platform for water resources modeling and optimization. The platform is available 24/7, accessible from everywhere, scalable, distributed, interoperable, and it creates a real-time multiuser collaboration platform. This thesis contributes with new and more powerful algorithms for an optimal reservoir operation and cloud application platform. All source codes are available for public use and can be used by researchers and practitioners to further advance the mentioned areas.
This book applies an interdisciplinary governance assessment framework to assess China's water quality governance from a holistic point of view. The project explores China's water quality status, water policy discourses, water regulations, public participation in water governance, the path towards green water law, eco-compensation approach in water quality management and the implementation mechanism for achieving water goals. It will appeal to academics in water law, researchers and practitioners dealing with water management, as well as a general audience interested in water issues.
This book comprises select papers from the International Conference on Emerging Trends in Civil Engineering (ICETCE 2018). Latest research findings in different branches of civil engineering such as structural engineering, construction materials, geotechnical engineering, water resources engineering, environmental engineering, and transportation infrastructure are covered in this book. The book also gives an overview of emerging topics like smart materials and structures, green building technologies, and intelligent transportation system. The contents of this book will be beneficial for students, academicians, industrialists and researchers working in the field of civil engineering.
The principle of transferable groundwater rights is that by making water rights capable of being traded in the market, water resources can be used more sustainably and efficiently. Groundwater would achieve its economic value, by switching from the high volume-low value irrigation, which is prevalent with many farmers, particularly in South Asia, to low volume-high value urban supply or the growing of intensive horticultural or cash crops. This book discusses transferable groundwater rights in their broader context. It starts with a detailed description of the physical aspects of groundwater, which non-technical readers should find useful, followed by a discussion of legal and economic aspects. Water transfers and the international experiences in transferable groundwater rights are dealt with in detail in two subsequent chapters. A model is presented to guide those involved in water resources management and planning in their decision process to introduce transferable groundwater rights and water rights trading. The author concludes that transferable groundwater rights potentially offer a better alternative to land-based water rights systems. However, he casts serious doubt on whether groundwater rights trading on its own can achieve water resources sustainability, environmental protection and social equity. Government intervention seems to be almost always needed to assist the water rights market and take responsibility for any of its adverse consequences.
This book outlines the current status of water resources management in Central Asia countries, and provides a review of the history, policies and transboundary cooperation regarding water resources in the region. Particular attention is given to the water-energy-food-environmental nexus, and to the application of the UNECE Environmental Conventions in Central Asia. Readers will also learn about the US and German environmental policies applied in Central Asia, and will discover specific case studies on water resources policies in Kazakhstan, China, Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan, and Afghanistan. Together with the companion volumes on Water Bodies and Climate Change in Central Asia and Water Resources Management in Central Asia, it offers a valuable source of information for a broad readership, from students and scientists interested in the environmental sciences, to policymakers and practitioners working in the fields of water resources policy and management, international relations, and environmental issues.
Selenium (Se) and tellurium (Te) are metalloids of commercial interest due to their physicochemical properties. The water soluble oxyanions of these elements (selenite, selenate, tellurite and tellurate) exhibit high toxicities; hence, their release in the environment is of great concern. This study demonstrates the potential use of fungi as Se- and Te-reducing organisms. The response of Phanerochaete chrysosporium to the presence of selenite and tellurite was evaluated, as well as its potential application in wastewater treatment and production of nanoparticles. Growth stress and morphological changes were induced in P. chrysosoporium when exposed to selenite and tellurite. Synthesis of Se0 and Te0 nanoparticles entrapped in the fungal biomass was observed, as well as the formation of unique Se0-Te0 nanocomposites when the fungus was cultivated concurrently with Se and Te. The response of P. chrysosporium to selenite exposure was investigated in different modes of fungal growth (pellets and biofilm). A bioprocess for selenite removal and Se0 nanoparticles recovery using an up-flow fungal pelleted reactor was developed. 70% selenite removal (10 mg Se L-1 d-1) was achieved under continuous mode. The use of Se0 nanoparticles immobilized in P. chrysosporium pellets as a new sorbent material for the removal of heavy metals from wastewater was demonstrated.
Examining the water, development and security linkages in Central Asia can feel a bit like solving a Rubik's cube. The Rubik's cube starts to usually find structure and the different pieces find their places when its solver adopts a systematic approach. Still, solving the whole cube takes time and perseverance. This is also the case with water and security in Central Asia as demonstrated by the chapters in this book. In the case of water and security in Central Asia, there are many "faces", including not only the Central Asian states but also the neighbouring countries and other players of global geopolitics; "stickers" such as policies, practices, causes, and impacts; and "colours" such as the different stakeholders, ranging from the micro and meso levels to the macro level. Understanding all these, or getting clarity on the nexus, can seem extremely challenging. Even though none of the chapters alone answers the question of what constitutes water and security in Central Asia, each of them gives thoughtful ideas and information on the complexity of the issue. This book was published as a special issue of the International Journal of Water Resources Development.
Efficient particle separation in order to meet stringent regulatory standards represent one of the biggest challenges facing the process industry operators today. Emerging environmental problems such as climate change, population growth and natural resource depletion make it more compelling to undertake research into alternative phase separation techniques and optimization of existing ones. Meeting this challenge requires innovative, revolutionary and integrated approach in the design and optimization of various unit processes in fine particle separation. Flocculation is widely used as an effective phase separation technique across many process industries such as water and wastewater treatment and in minerals processing. In this work, a new pre-treatment technique was developed using a patented bench scale reactor unit as a technical proof of concept. Furthermore, the book provides a valuable insight into the hydrodynamics and fluid-particle interactions within the agglomeration units. The relatively high solids content of the stable pellets (approximately 30 %) and very low residual turbidity of the post-sedimentation supernatant (7 NTU) clearly demonstrate the potential of this technique. In addition to significantly improving the subsequent solid-liquid separation efficiency, this study also showed that the effluent can be recycled back into the sewer network or utilized for non-portable reuse. The findings obtained from this research will be extremely useful in the scaling up and optimization of the reactor system.
Explore the Health Effects of Fluoride Pollution Fluoride in Drinking Water: Status, Issues, and Solutions establishes the negative impacts of naturally occurring fluoride on human health and considers the depth and scope of fluoride pollution on an international scale. The book discusses current global water quality and fluoride-related issues and draws overall awareness to the problems associated with fluoride in drinking water. Utilizing recent scientific studies to examine the current status of fluoride pollution, it provides a fundamental understanding of fluorosis, describes health problems associated with fluorosis, and discusses viable scientific solutions. The book places special emphasis on India, Africa, China, and other countries deeply affected by fluoride pollution. A single, comprehensive source covering health issues related to fluoride and its effect on humans, this book: Compiles information from scientific literature on the state of fluoride pollution Characterizes the human impacts of fluorosis Provides a comparative evaluation of technologies used for defluoridation Gives a comprehensive account of human health effects with appropriate scientific descriptions and photographs Includes detailed descriptions on the geochemistry of fluoride entry into groundwater aquifers Presents a case study that deals with the successful removal of fluoride from drinking water A vital resource for environmental and public health officials as well as academic researchers in the area, Fluoride in Drinking Water: Status, Issues, and Solutions covers human health issues associated with fluoride-rich water and describes relevant techniques for defluoridation that can be used to overcome the stress, issues, and challenges of natural fluoride in drinking water.
Water is intertwined in the daily life of humans in countless ways.
The importance of water as a driver for health, food security, and
quality of life and as a pillar for economic development is unique.
As water affects human lives, the mankind also effects the
hydrological cycle, in all dimensions from the local to the global
scale. Food production accounts for 90% of water use in developing
countries. Hydropower production evokes emotions; yet sustainable
energy production is among cornerstones of economic development.
The damages caused by floods and droughts are escalating all over
the world. The human impacts on ecosystems are increasing as well.
Water is largely a political good since a bulk of the mankind lives
in river basins shared by two or more nations.
In this book, first published in 1965, the authors identify the technological opportunities and costs of water recirculation and water quality adjustment in thermal plants, relating them to the possibilities for minimal expenditure and maximum efficiency in the use of water for servicing an entire region with thermal power. Water Demand for Steam Electric Generation will be of interest to students of environmental studies.
Lack of clean water is one of the most important public health challenges in less developed communities. Due to insufficient financial and technical resources in places in need, development of low-cost water treatment technologies can play a key role in sustainable water provision. In this context, this PhD research investigated the removal of pathogenic microorganisms in simple sand filtration set-ups supplemented with low-cost adsorbents (hydrochar) produced via hydrothermal carbonization of biowastes. Two types of hydrochar, derived from hydrothermal carbonization of agricultural residue of maize and stabilized sewage sludge from wastewater treatment plant, were evaluated as adsorbents for Escherichia coli removal in saturated sand columns. The removal efficiency of sand columns amended with these adsorbents improved from 20-70% to ~90 % by alkali activation carried out in room temperatures using 1 M potassium hydroxide solution. This PhD research also demonstrates the removal of human pathogenic viruses in sand columns supplemented with hydrochar adsorbents derived from stabilized sewage sludge and fresh swine waste. In order to enumerate human pathogenic rotavirus and adenovirus in virus removal experiments, low-cost polymerase chain reaction assays were developed under this PhD study. These assays show a competent performance in analyzing virus concentrations in both laboratory and environmental samples. Amendment with either hydrochar (without alkali activation) in sand columns was able to remove more than 99% of both viruses.
The 2015 International Conference on Water Resource and Environment (WRE2015) aims to provide a platform where scholars from different countries can exchange ideas, opinions and views. This book is divided into four main themes: 1. Hydrology and water resources; 2. Water pollution; 3. Water treatment methods, and 4. Freshwater ecosystems. Exploring topics such as water-energy-food nexus, water purification solutions, chemical hydrology, south to north water diversion projects, and the aligning of water resources needs with the conservation of habitats and species, this book is of interest to professionals and academics involved in hydraulic engineering and related fields.
Selenium is an intriguing element as on one hand it is toxic and on the other hand it is a necessary micro-nutrient for humans. It is also a desirable element due to its unique properties and hence it is used in xerogrpahy, rectifiers, solar cells etc. The presence of selenium in agriculture, acid-mine drainage wastewaters is known and their remediation is necessary. Since, selenium is not mined anywhere, it is important to recover the selenium from waste streams. Bio-remediation of selenium containing wastewater is not only efficient but it also gives insight into the fate of selenium in the bioreactors and environment, thus improving the recovery efficiencies. However, there are still many unknowns in the fate of the selenium present in the wastestreams when treated using microbial processes. One of the biggest unknown is the characteristics of biogenic colloidal elemental selenium nanoparticles (BioSeNPs). These BioSeNPs are present in the bioreactors and are colloidal in nature, hence, present in the effluent of the reactor. BioSeNPs are also known to have the coating of organic polymer on its surface, however the origin of these coating are not known. Moreover, these BioSeNPs are always spherical in shape which is desirable in some cases and not so desirable in many. Furthermore, these BioSeNPs are produced extracellularly and also intracellularly, however the effect of the BioSeNPs' trapping in the biomass is not well understood. This book throws light on the above questions and improves our fundamental understanding on the characteristics and fate of BioSeNPs in the bioreactors and environment. This book also uses the fundamental knowledge to improve the bioremediation process and recoverability of selenium. This study demonstrates that extracellular polymeric substances (EPS) are capping the BioSeNPs and thus providing them colloidal stability and hence mobility, which is in contrast to our conventional understanding on the role of EPS in metal(loid) nanoparticles mobility. All the produced BioSeNPs are known to be spherical but nanowire shape is important to understand their fundamental properties and application. Thus, this study produced biogenic selenium nanowires by reduction of selenite by simply using thermophilic temperatures (55 and 65 oC) and characterized them for their magnetization properties. The practical applications of BioSeNPs were explored by preferentially adsorbing heavy metals in the following order: Cu>Zn>Cd. The development of one-step process for selenium oxyanions removal and BioSeNPs recovery using thermophilic UASB reactor and activated sludge process was attempted. Thermophilic reduction of selenate in an upflow anaerobic sludge blanket (UASB) reactor showed better retention of BioSeNPs and thus, higher total selenium removal as compared to mesophilic reactor. The aerobic reduction of selenite using activated sludge also showed better retention of BioSeNPs, however, continuous operation of the reactor was not achieved. The selenite fed activated sludge trapping BioSeNPs showed improved settling properties and hydrophilicity as compared to control sludge.
This book represents a landmark effort to probe and analyze the theory and empirics of designing water disaster management policies. It consists of seven chapters that examine, in-depth and comprehensively, issues that are central to crafting effective policies for water disaster management. The authors use historical surveys, institutional analysis, econometric investigations, empirical case studies, and conceptual-theoretical discussions to clarify and illuminate the complex policy process. The specific topics studied in this book include a review and analysis of key policy areas and research priority areas associated with water disaster management, community participation in disaster risk reduction, the economics and politics of 'green' flood control, probabilistic flood forecasting for flood risk management, polycentric governance and flood risk management, drought management with the aid of dynamic inter-generational preferences, and how social resilience can inform SA/SIA for adaptive planning for climate change in vulnerable areas. A unique feature of this book is its analysis of the causes and consequences of water disasters and efforts to address them successfully through policy-rich, cross-disciplinary and transnational papers. This book is designed to help enrich the sparse discourse on water disaster management policies and galvanize water professionals to craft creative solutions to tackle water disasters efficiently, equitably, and sustainably. This book should also be of considerable use to disaster management professionals, in general, and natural resource policy analysts. This book was published as a special issue of the Journal of Natural Resource Policy Research.
Climate change on earth is having significant impacts on water resources management in Southeast Asia. Knowledge of climate variations and climate change can be valuable for water resources management in agriculture, urban and industrial water supplies, hydroelectric power generation, and ecosystem maintenance. This book presents the findings of case studies on forecasting climate change and its impacts on water availability, irrigation water requirements, floods and droughts, reservoir inflows and hydropower generation, and crop yield in specific basins of Southeast Asian countries such as Thailand, Myanmar, and Vietnam. All case studies start by forecasting the climate change and investigating its impacts by employing several hydrological reservoir simulations and crop water requirement models. The findings provide sound and scientific advice for water managers on the real impacts of climate change and how to adapt to its many challenges.
Remediation of groundwater is complex and often challenging. But the cost of pump and treat technology, coupled with the dismal results achieved, has paved the way for newer, better technologies to be developed. Among these techniques is permeable reactive barrier (PRB) technology, which allows groundwater to pass through a buried porous barrier that either captures the contaminants or breaks them down. And although this approach is gaining popularity, there are few references available on the subject. Until now. Permeable Reactive Barrier: Sustainable Groundwater Remediation brings together the information required to plan, design/model, and apply a successful, cost-effective, and sustainable PRB technology. With contributions from pioneers in this area, the book covers state-of-the-art information on PRB technology. It details design criteria, predictive modeling, and application to contaminants beyond petroleum hydrocarbons, including inorganics and radionuclides. The text also examines implementation stages such as the initial feasibility assessment, laboratory treatability studies (including column studies), estimation of PRB design parameters, and development of a long-term monitoring network for the performance evaluation of the barrier. It also outlines the predictive tools required for life cycle analysis and cost/performance assessment. A review of current PRB technology and its applications, this book includes case studies that exemplify the concepts discussed. It helps you determine when to recommend PRB, what information is needed from the site investigation to design it, and what regulatory validation is required.
This book examines the role of The International Maritime Organization (IMO) in the prevention and control of pollution of the marine environment from vessels with a particular reference to the current north-south tensions regarding the strategy for combating climate change in the maritime sector as well as the prevention of marine pollution from the ship-breaking industry. The IMO, a United Nations specialized agency, has been entrusted with the duty to provide machinery for cooperation among governments for the prevention and control of pollution of the marine environment from vessels. The organization is responsible for drafting legal instruments as well as for facilitating technical cooperation for the protection of the marine environment. Although IMO legal instruments are mainly targeted at the prevention of pollution of the marine environment from vessels, there is a trend towards a liberal interpretation of this, and the organization has expanded its work to areas like shipbreaking, which is essentially a land-based industry.
Urban informal settlements or slums are growing rapidly in cities in sub-Saharan Africa. Most often, a sewer system is not present and the commonly-used low-cost onsite wastewater handling practices, typically pit latrines, are frequently unplanned, uncontrolled and inefficient. Consequently, most households dispose of their untreated or partially treated wastewater on-site, generating high loads of nutrients to groundwater and streams draining these areas. However, the fate of nutrients in urban slums is generally unknown. In excess, these nutrients can cause eutrophication in downstream water bodies. This book provides an understanding of the hydro-geochemical processes affecting the generation, fate and transport of nutrients (nitrogen and phosphorus) in a typical urban slum area in Kampala, Uganda. The approach used combined experimental and modeling techniques, using a large set of hydrochemical and geochemical data collected from shallow groundwater, drainage channels and precipitation. The results show that both nitrogen-containing acid precipitation and domestic wastewater from slum areas are important sources of nutrients in urban slum catchments. For nutrients leaching to groundwater, pit latrines retained over 80% of the nutrient mass input while the underlying alluvial sandy aquifer was also an effective sink of nutrients where nitrogen was removed by denitrification and anaerobic oxidation and phosphorus by adsorption to calcite. In surface water, nutrient attenuation processes are limited. This study argues that groundwater may not be important as regards to eutrophication implying that management interventions in slum areas should primarily focus on nutrients released into drainage channels. This research is of broad interest as urbanization is an ongoing trend and many developing countries lack proper sanitation systems.
Harmful algal blooms (HABs) occurring in freshwater, and the associated toxins they produce, are dangerous to animals and humans. Mitigating the increasing presence of HABs presents a major challenge to water managers and drinking water utilities across the world. This book explores the current research on removal of HABs and toxins from drinking water. It provides the necessary tools so that treatment plant operators, engineers, and water managers can understand the vulnerability of drinking water treatment plants to HABs and develop treatment processes to minimize the impact of these contaminants. Although conventional treatment processes can be effective for the removal of HAB cells and some HAB toxins under optimal conditions, the potential exists for significant breakthrough of toxins during normal operation. As a result, there is a recognized need for more advanced techniques. Possible advanced processes for removing HAB toxins include granular activated carbon (GAC), powdered activated carbon (PAC), or oxidative processes. This book reviews both conventional and advanced treatment processes and presents clear and easy-to-understand procedures for the design of systems for optimal cell or toxin removal. |
You may like...
|