![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment
As water demand has increased globally and resources have become more limited because of physical scarcity, over-exploitation and pollution, it has been necessary to develop more options for water supplies. These options include the production at large scale of high-quality reused water from municipal sources for potable uses. Their economic, social and environmental benefits have been many as they have addressed supply scarcity, efficient resource use and environmental and public health considerations. This book includes discussions on potable water reuse history; emerging contaminants and public health; public-private partnerships in the water reuse sector; regulatory frameworks for reused water in the United States and Europe; experiences in Australia, China in general and Beijing in particular, Singapore and Windhoek; narratives and public acceptance and perceptions of alternative water sources. The main constraints on implementation of water reuse projects in different parts of the world seem to have been lack of full public support due to perceived health hazards and environmental impacts. A main handicap has been that governments and water utilities have been slow to understand public concerns and perceptions. After several backlashes, public information, communication and awareness campaigns, broader participation and educational programmes have become integral parts of development policy and decision-making frameworks.
The continued lack of access to adequate amounts of safe drinking water is one of the primary causes of infant morbidity and mortality worldwide and a serious situation which governments, international agencies and private organizations are striving to alleviate. Barriers to providing safe drinking water for rural areas and small communities that must be overcome include the financing and stability of small systems, their operation, and appropriate, cost-effective technologies to treat and deliver water to consumers. While we know how to technically produce safe drinking water, we are not always able to achieve sustainable safe water supplies for small systems in developed and developing countries. Everyone wants to move rapidly to reach the goal of universal safe drinking water, because safe water is the most fundamental essential element for personal and social health and welfare. Without safe water and a safe environment, sustained personal economic and cultural development is impossible. Often small rural systems are the last in the opportunity line. Safe Drinking Water in Small Systems describes feasible technologies, operating procedures, management, and financing opportunities to alleviate problems faced by small water systems in both developed and developing countries. In addition to widely used traditional technologies this reference presents emerging technologies and non-traditional approaches to water treatment, management, sources of energy, and the delivery of safe water.
Dispersion in Estuaries and Coastal Waters describes the physical processes which result in the dilution of a substance in the marine environment. The emphasis is mainly on the fundamental mechanisms of dispersion and the occurrence of these processes in estuaries and coastal waters Aspects of the present understanding of fluid dynamics in homogenous and stratified flows are discussed, with particular reference to the relevance of flow conditions to the turbulent state. The book describes how the associated dispersion processes are represented in mathematical models to quantify dilution in marine systems and the experimental techniques used to derive the mixing parameters required for the models. Concluding by discussing the application of the concepts of dispersion in well mixed, stratified and partially mixed systems, Dispersion in Estuaries and Coastal Waters acts as an excellent guide book for those needing to solve practical problems relating to marine dispersion. It also provides a useful review of dispersion as it cites key publications, both recent and long-standing, which are invaluable in interpreting and quantifying the dilution and fate of material in the marine environment.
The main objective of this research was to optimize the electron donor supply in sulphate reducing bioreactors treating sulphate rich wastewater. Two types of electron donor were tested: lactate and slow release electron donors such as carbohydrate based polymers and lignocellulosic biowastes. Biological sulphate reduction was evaluated in different bioreactor configurations: the inverse fluidized bed, sequencing batch and batch reactors. The reactors were tested under steady-state, high-rate and transient-state feeding conditions of electron donor and acceptor, respectively. The results showed that the inverse fluidized bed reactor configuration is robust and resilient to transient and high-rate feeding conditions at a hydraulic retention time as low as 0.125 d. The biological sulphate reduction was limited by the COD:sulphate ratio (< 1.7). The results from artificial neural network modelling showed that the influent sulphate concentrations synergistically affected the COD removal efficiency and the sulphide production. Concerning the role of electron donors, the slow release electron donors allowed a biological sulphate reduction > 82% either using carbohydrate based polymers or lignocellulosic bio-wastes, in batch bioreactors. The biological sulphate reduction was limited by the hydrolysis-fermentation rate and by the complexity of the slow release electron donors.
Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in seawater reverse osmosis (SWRO) plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of the plant to avoid irreversible fouling of downstream SWRO membranes. As more extra large SWRO plants (>500,000 m3/day) are expected to be constructed in the coming years, frequent chemical cleaning (>1/year) of SWRO installations will not be feasible, and more reliable pre-treatment system will be required. To maintain stable operation in SWRO plants during algal bloom periods, pre-treatment using ultrafiltration (UF) membranes has been proposed. This thesis addresses the effect of algal blooms on the operation of UF pre-treatment and SWRO. Experimental investigations demonstrated that marine algal blooms can impact the backwashability of UF and can accelerate biological fouling in RO. However, it is unlikely that algae themselves are the main causes of fouling but rather the transparent exopolymer particles (TEPs) that they produce. To better monitor TEPs, a new method capable of measuring TEP as small as 10 kDa was developed and showed that TEPs can be effectively removed by UF pre-treatment prior to SWRO. This work also demonstrated that although TEPs and other algal-derived material (AOM) are very sticky and can adhere to UF and RO membranes, adhesion can be much stronger on membranes already fouled with AOM. Moreover, a model was developed to predict the accumulation of algal cells in capillary UF membranes which further demonstrated that the role of algal cells in UF fouling is not as significant as that of AOM and TEPs. Overall, this study demonstrates that better analytical methods and tools are essential in elucidating the adverse impacts of algal blooms in seawater on the operation of membrane-based desalination plants (UF-RO). It also highlighted the importance of developing effective pre-treatment processes to remove AOM from the raw water and reduce the membrane fouling potential of the feed water for downstream SWRO membranes.
Urban informal settlements or slums are growing rapidly in cities in sub-Saharan Africa. Most often, a sewer system is not present and the commonly-used low-cost onsite wastewater handling practices, typically pit latrines, are frequently unplanned, uncontrolled and inefficient. Consequently, most households dispose of their untreated or partially treated wastewater on-site, generating high loads of nutrients to groundwater and streams draining these areas. However, the fate of nutrients in urban slums is generally unknown. In excess, these nutrients can cause eutrophication in downstream water bodies. This book provides an understanding of the hydro-geochemical processes affecting the generation, fate and transport of nutrients (nitrogen and phosphorus) in a typical urban slum area in Kampala, Uganda. The approach used combined experimental and modeling techniques, using a large set of hydrochemical and geochemical data collected from shallow groundwater, drainage channels and precipitation. The results show that both nitrogen-containing acid precipitation and domestic wastewater from slum areas are important sources of nutrients in urban slum catchments. For nutrients leaching to groundwater, pit latrines retained over 80% of the nutrient mass input while the underlying alluvial sandy aquifer was also an effective sink of nutrients where nitrogen was removed by denitrification and anaerobic oxidation and phosphorus by adsorption to calcite. In surface water, nutrient attenuation processes are limited. This study argues that groundwater may not be important as regards to eutrophication implying that management interventions in slum areas should primarily focus on nutrients released into drainage channels. This research is of broad interest as urbanization is an ongoing trend and many developing countries lack proper sanitation systems.
The rate of global increase in water abstraction for irrigation has been declining since the 1970's due to declining potentials for large and medium-scale irrigation developments, and is expected to further decline in the next decades. As such the significant proportion of the expected increase in production would have to be supplied from existing irrigated and /or cultivated lands. This in turn could be achieved by enhancing land and water productivity through improved performance and optimal operation and maintenance. With less than 15% of over 5 million ha irrigation potential harnessed, irrigation devolvement in Ethiopia remained low. Over 70% of the developed irrigation in the country belongs to small-scale irrigation serving smallholder farmers. While accelerated development of new irrigation, particularly of large and medium-scale schemes is relevant in Ethiopia, ensuring the performance and sustainability of existing schemes is also equally important. The existing irrigation schemes in Ethiopia are generally characterized by an overall performance and technical sustainability levels of below expectation. This thesis evaluates the performance of two large-scale (Wonji-Shoa and Metahara) and two community-managed (Golgota and Wedecha) irrigation schemes located in the Awash River Basin of Ethiopia. The study focussed on hydraulic/water delivery performance in the large-scale schemes, and on comparative and internal irrigation service (utility) evaluation in the community-managed schemes. Water delivery performance was evaluated using routine data and hydrodynamic modelling. Farmers' utility was evaluated using qualitative responses of water users. Major performance challenges in each category of schemes were addressed and operational/water management options for improvement were identified.
Africa has been severely affected by droughts in the past, contributing to food insecure conditions in several African countries. In view of the (even more) severe drought conditions and water shortage that may be expected in sub-Saharan Africa in the coming years, efforts should focus on improving drought management by ameliorating resilience and preparedness to drought. This study contributes to the development of a modelling framework for hydrological drought forecasting in sub-Saharan Africa as a step towards an effective early warning system. The proposed hydrological drought forecasting system makes use of a hydrological model that was found to be suitable for drought forecasting in Africa and could represent the most severe past droughts in the Limpopo Basin. The modelling results showed that there is an added value in computing indicators based on the hydrological model for the identification of droughts and their severity. The proposed seasonal forecasting system for the Limpopo Basin was found to be skilful in predicting hydrological droughts during the summer rainy season. The findings showed that the persistence of the initial hydrological conditions contribute to the predictability up to 2 to 4 months, while for longer lead times the predictability of the system is dominated by the meteorological forcing. An effective drought forecasting and warning system will hopefully contribute to important aspects in the region such as water security, food security, hazard management, and risk reduction.
Reservoir operation is a multi-objective optimization problem, and is traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation, named nested DP (nDP), nested SDP (nSDP), nested reinforcement learning (nRL) and their multi-objective (MO) variants, correspondingly MOnDP, MOnSDP and MOnRL. The idea is to include a nested optimization algorithm into each state transition, which reduces the initial problem dimension and alleviates the curse of dimensionality. These algorithms can solve multi-objective optimization problems, without significantly increasing the algorithm complexity or the computational expenses. It can additionally handle dense and irregular variable discretization. All algorithms are coded in Java and were tested on the case study of the Knezevo reservoir in the Republic of Macedonia. Nested optimization algorithms are embedded in a cloud application platform for water resources modeling and optimization. The platform is available 24/7, accessible from everywhere, scalable, distributed, interoperable, and it creates a real-time multiuser collaboration platform. This thesis contributes with new and more powerful algorithms for an optimal reservoir operation and cloud application platform. All source codes are available for public use and can be used by researchers and practitioners to further advance the mentioned areas.
Selenium (Se) and tellurium (Te) are metalloids of commercial interest due to their physicochemical properties. The water soluble oxyanions of these elements (selenite, selenate, tellurite and tellurate) exhibit high toxicities; hence, their release in the environment is of great concern. This study demonstrates the potential use of fungi as Se- and Te-reducing organisms. The response of Phanerochaete chrysosporium to the presence of selenite and tellurite was evaluated, as well as its potential application in wastewater treatment and production of nanoparticles. Growth stress and morphological changes were induced in P. chrysosoporium when exposed to selenite and tellurite. Synthesis of Se0 and Te0 nanoparticles entrapped in the fungal biomass was observed, as well as the formation of unique Se0-Te0 nanocomposites when the fungus was cultivated concurrently with Se and Te. The response of P. chrysosporium to selenite exposure was investigated in different modes of fungal growth (pellets and biofilm). A bioprocess for selenite removal and Se0 nanoparticles recovery using an up-flow fungal pelleted reactor was developed. 70% selenite removal (10 mg Se L-1 d-1) was achieved under continuous mode. The use of Se0 nanoparticles immobilized in P. chrysosporium pellets as a new sorbent material for the removal of heavy metals from wastewater was demonstrated.
Seawater desalination is a rapidly growing coastal industry that is increasingly threatened by algal blooms. Depending on the severity of algal blooms, desalination systems may be forced to shut down because of clogging and/or poor feed water quality. To maintain stable operation and provide good feed water quality to seawater reverse osmosis (SWRO) systems, ultrafiltration (UF) pre-treatment is proposed. This research focused on assessing the ability of UF and other pre-treatment technologies to reduce biofouling in SWRO systems. An improved method to measure bacterial regrowth potential (BRP) was developed and applied at laboratory, pilot and full scale to assess the ability of conventional UF (150 kDa) and tight UF (10 kDa) alone and in combination with a phosphate adsorbent to reduce regrowth potential and delay the onset of biofouling in SWRO. The improved bacterial regrowth potential method employs a natural consortium of marine bacteria as inoculum and flow cytometry. The limit of detection of the BRP method was lowered to 43,000 +/- 12,000 cells/mL, which is equivalent to 9.3 +/- 2.6 g-Cglucose/L. The reduction in bacterial regrowth potential after tight UF (10 kDa) was 3 to 4 times higher than with conventional UF (150 kDa). It was further reduced after the application of a phosphate adsorbent, independent of pore size of the UF membrane. Pilot studies demonstrated that the application of tight UF (10 kDa) coupled with a phosphate adsorbent consistently lowered the bacterial regrowth potential and no feed channel pressure drop increase was observed in membrane fouling simulators (MFS) over a period of 21 days. The study also showed that non-backwashable fouling of UF membranes varied strongly with the type of algal species and the algal organic matter (AOM) they release. The presence of polysaccharide (stretching -OH) and sugar ester groups (stretching S=O) was the main cause of non-backwashable fouling. In conclusion, this study showed that an improved BRP method is suitable for the assessment of SWRO pre-treatment systems and it can be a useful tool to develop potential strategies to mitigate biofouling and improve the sustainability of SWRO systems.
Lack of clean water is one of the most important public health challenges in less developed communities. Due to insufficient financial and technical resources in places in need, development of low-cost water treatment technologies can play a key role in sustainable water provision. In this context, this PhD research investigated the removal of pathogenic microorganisms in simple sand filtration set-ups supplemented with low-cost adsorbents (hydrochar) produced via hydrothermal carbonization of biowastes. Two types of hydrochar, derived from hydrothermal carbonization of agricultural residue of maize and stabilized sewage sludge from wastewater treatment plant, were evaluated as adsorbents for Escherichia coli removal in saturated sand columns. The removal efficiency of sand columns amended with these adsorbents improved from 20-70% to ~90 % by alkali activation carried out in room temperatures using 1 M potassium hydroxide solution. This PhD research also demonstrates the removal of human pathogenic viruses in sand columns supplemented with hydrochar adsorbents derived from stabilized sewage sludge and fresh swine waste. In order to enumerate human pathogenic rotavirus and adenovirus in virus removal experiments, low-cost polymerase chain reaction assays were developed under this PhD study. These assays show a competent performance in analyzing virus concentrations in both laboratory and environmental samples. Amendment with either hydrochar (without alkali activation) in sand columns was able to remove more than 99% of both viruses.
Well rehabilitation techniques have been the focus of major advancements in recent times. Environmental engineers can keep pace with those changes with the book Water Well Rehabilitation.
This monograph provides a framework and guidelines for the assessment of institutional frameworks for integrated water resources management (IWRM). The framework and guidelines were developed to enable expert teams of the Inter-American Development Bank to incorporate capacity-building considerations into water-related projects. The framework and guidelines were tested in four countries with different physical, social and economic environments in Latin America and the Caribbean. Using this framework, it is possible to identify shortcomings in existing water management arrangements and to formulate interventions at and between the constitutional, organizational, and operational levels. To guide the formulation of interventions, an ideal IWRM situation is formulated. Due to the temporal and spatial specificity, a desired IWRM situation is formulated in a process which consists of ten operational steps. This process is based on an extensive consultation and participation of all relevant stakeholders. The fields of interventions concern awareness creation, policy development, legal and financial arrangements, human resources development and management information and decision support systems.
This monograph provides a framework and guidelines for the assessment of institutional frameworks for integrated water resources management (IWRM). The framework and guidelines were developed to enable expert teams of the Inter-American Development Bank to incorporate capacity-building considerations into water-related projects. The framework and guidelines were tested in four countries with different physical, social and economic environments in Latin America and the Caribbean. Using this framework, it is possible to identify shortcomings in existing water management arrangements and to formulate interventions at and between the constitutional, organizational, and operational levels. To guide the formulation of interventions, an ideal IWRM situation is formulated. Due to the temporal and spatial specificity, a desired IWRM situation is formulated in a process which consists of ten operational steps. This process is based on an extensive consultation and participation of all relevant stakeholders. The fields of interventions concern awareness creation, policy development, legal and financial arrangements, human resources development and management information and decision support systems.
Freshwater is a finite resource and is being deteriorated directly and indirectly by anthropogenic pressures. Preserving the quality and availability of freshwater resources is becoming one of the most pressing environmental challenges on the international horizon. To ensure the preservation as well as availability of freshwater resources, there is a need to understand the ecology of the freshwater systems, pollution problems, their impacts, restoration techniques to be opted and the conservation measures. In this backdrop the present book on 'Freshwater Pollution Dynamics and Remediation' has been compiled. The book provides an understanding about the present state of art, pollution impacts including the changes in the environmental quality as well as the shift in the aquatic biological communities of the fragile freshwater ecosystems. Besides, the impact of deteriorating quality of the freshwater ecosystems on the animal and human health is also discussed in detail. This book provides a comprehensive account of the techniques based on updated research in biotechnology, bio-remediation, phyto-remediation and nano-bioremediation. The role of biosorpers and biofilms as a remediation tool has also been detailed. The book is a ready reference for researchers, scientists and educators who are involved in the freshwater pollution, remediation and management studies. The book editors with an expertise in diverse research fields in freshwater ecosystems have congregated the most inclusive research accounts on the freshwater pollution and remediation and thus developed a repository of diverse knowledge on the subject
This workbook is a companion to Applied Math for Water Plant Operators (ISBN: 9780877628743) and part of the Applied Math for Water Plant Operators Set (ISBN: 9781566769884). It contains self-teaching guides for all water treatment calculations, skill checks, hundreds of worked examples, and practice problems.
At a time of great turmoil and crisis, environmentally, socially and politically, water has emerged as a topic of huge global concern. Moreover, many argue that what is needed in order to change our relationship with the environment is a cultural paradigm shift. To this end, this volume brings together diverse approaches to exploring human relationships with the watery world and the other living things that rely upon it. Through exploring multiple creative ways of engaging with water and people, the volume adds to the current zeitgeist of writing about water by expanding the discussion about this vital substance and how, as humans, we relate to it. Chapters focus on creative explorations and explorations of creativity in relation to developing these understandings, including concepts such as hydrocitizenship and responses to drought and flooding. Drawing on the in-depth research and experience of arts practitioners including participatory artists, as well as academics from a variety of fields including geography, anthropology, health studies and environmental humanities, the book provides a rich and multidisciplinary perspective on water and creative ways of engaging and understanding human-water relationships. It represents a valuable source and inspiration for academics, arts practitioners and those involved in environmental policy and governance.
The evolution and utilization of estuarine and coastal regions are greatly restricted by sediment problems. This thesis aims to better understand fine sediment transport under combined action of waves and currents, especially in the wave-current bottom boundary layer (BBL). Field observations, experimental data analysis, theoretical analysis and numerical models are employed. Silt-dominated sediments are sensitive to flow dynamics and the suspended sediment concentration (SSC) increase rapidly under strong flow dynamics. This research unveils several fundamental aspects of silty sediment, i.e., the criterion of the incipient motion, the SSC profiles and their phase-averaged parameterization in wave-dominated conditions. An expression for sediment incipient motion is proposed for silt-sand sediment under combined wave and current conditions. A process based intra-wave 1DV model for flow-sediment dynamics near the bed is developed in combined wave-current conditions. The high concentration layer (HCL) was simulated and sensitivity analysis was carried out by the 1DV model on factors that impact the SSC in the HCL. Finally, based on the 1DV model, the formulations of the mean SSC profile of silt-sand sediments in wave conditions were proposed. The developed approaches are expected to be applied in engineering practice and further simulation.
This second edition demonstrates how chemistry influences the
design of water treatment plants and how it should influence the
design.
As pressures on water resources have increased, problems of water quality have claimed high priority in national concern and governmental policy. In this book, first published in 1969, Lyle E. Craine describes how Great Britain enacted new governmental procedures for studying, planning, and executing water management programmes. Although the physical and social characteristics of the United States' water resources problems differ from those of England, this analysis of the British institutional arrangements for water management suggests constructive insights for managing water resources within the individual states. This title is a valuable resource for students interested in environment and sustainability issues, national water resources problems, and government policy making.
Incentives in Water Quality Management explores the role of effluent charges in France and the Ruhr area of the federal republic of Germany by delving into both regulatory and economic systems that are utilised in the water quality management of these two areas. Originally published in 1981, these studies place an emphasis on the necessity of legislation in effective water quality management whilst attempting to create a complete picture of the water quality management systems in place in France and the Ruhr area. This title will be of interest to students of Environmental Studies.
New edition covers the latest practices, regulations, and alternative disinfectants Since the publication of the Fourth Edition of "White's Handbook of Chlorination and Alternative Disinfectants" more than ten years ago, the water industry has made substantial advances in their understanding and application of chlorine, hypochlorite, and alternative disinfectants for water and wastewater treatment. This "Fifth Edition," with its extensive updates and revisions, reflects the current state of the science as well as the latest practices. Balancing theory with practice, the "Fifth Edition" covers such important topics as: Advances in the use of UV and ozone as disinfectants Alternative disinfectants such as chlorine dioxide, iodine, and bromine-related products Advanced oxidation processes for drinking water and wastewater treatment New developments and information for the production and handling of chlorine Latest regulations governing the use of different disinfectants For each disinfectant, the book explains its chemistry, effectiveness, dosing, equipment, and system design requirements. Moreover, the advantages and disadvantages of each disinfectant are clearly set forth. References at the end of each chapter guide readers to the primary literature for further investigation. Authored and reviewed by leading experts in the field of water and wastewater treatment, this "Fifth Edition" remains an ideal reference for utilities, regulators, engineers, and plant operators who need current information on the disinfection of potable water, wastewater, industrial water, and swimming pools.
This volume provides readers with an opportunity to learn from front line water managers of watershed-based agencies across Canada about integrated water management (or integrated water resource management). In common with practice in much of the world, the responsibility for implementing integrated watershed management in Canada is fragmented. Each province and territory in Canada has developed unique approaches or governance models to guide decision making in that regard. Thus, this edited volume enables readers from around the world to gain insight on the best practices in Canada for achieving success and addressing barriers to implement IWM. Although there remains non consensus about how to "best" approach river basin management, some of the main observations include: There is a need to balance a focus on "the big picture", with scoping the scale and scope of planning activities in order that feasible and effective solutions can be implemented Three types of integration are popular among the agencies included in the book: (i) among environment, economy and society, (ii) interactions between people and the environment and (iii) integration (or coordination) of administrative activities. Much more attention is required to achieving effective engagement from Indigenous communities The chapters were originally published in a special issue of the International Journal of Water Resources Development.
Worldwide, many regions have a great potential to cover part of their pressing water needs by renewable energy powered water treatment processes using either thermal or membrane based technologies. Not only arid and semiarid regions are increasingly suffering from water shortage but also many other regions face a limitation of freshwater resources either by increasing contamination of surface water bodies or groundwater resources unsuitable for drinking and irrigation purposes either due to their high grade of mineralization or their contents of toxic components. In many areas without centralized water supply, treatment techniques using locally available renewable energy resources such as wind, solar and geothermal can provide an economical, social and environmentally sustainable option for clean water production from seawater and from highly mineralized or otherwise unsuitable ground- and surface water. This book provides an overview on possible cost-efficient techniques and application opportunities for different scales and shows why the implementation of these technologies faces numerous technological, economic and policy barriers and provides suggestions how they can be overcome. It serves as a synoptic compendium of the fundamentals of freshwater production using renewable energies, applicable to all types of water, ranging from brackish to marine water and also including industrial and communal residual water. The book is aimed at professionals, academics and decision makers worldwide, working in the areas of water resources, water supply,land planning, energy planning, greenhouse gases emission mitigation and rural development. |
![]() ![]() You may like...
|