Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment
This new manual is an indispensable working lab guide and reference for water/wastewater quality analysis. Based on procedures from "Standard Methods" and "Methods for Chemical Analysis of Water and Waste (EPA)," and other pertinent references the Water and Wastewater Examination Manual is an excellent complement to these references-that you will want to keep at your fingertips. Written especially for use by water quality laboratory technicians and water/wastewater operators, managers and supervisors-who will use this practical manual every day. Procedures are included for parameters frequently used in water quality analysis.
Selenium (Se) and tellurium (Te) are metalloids of commercial interest due to their physicochemical properties. The water soluble oxyanions of these elements (selenite, selenate, tellurite and tellurate) exhibit high toxicities; hence, their release in the environment is of great concern. This study demonstrates the potential use of fungi as Se- and Te-reducing organisms. The response of Phanerochaete chrysosporium to the presence of selenite and tellurite was evaluated, as well as its potential application in wastewater treatment and production of nanoparticles. Growth stress and morphological changes were induced in P. chrysosoporium when exposed to selenite and tellurite. Synthesis of Se0 and Te0 nanoparticles entrapped in the fungal biomass was observed, as well as the formation of unique Se0-Te0 nanocomposites when the fungus was cultivated concurrently with Se and Te. The response of P. chrysosporium to selenite exposure was investigated in different modes of fungal growth (pellets and biofilm). A bioprocess for selenite removal and Se0 nanoparticles recovery using an up-flow fungal pelleted reactor was developed. 70% selenite removal (10 mg Se L-1 d-1) was achieved under continuous mode. The use of Se0 nanoparticles immobilized in P. chrysosporium pellets as a new sorbent material for the removal of heavy metals from wastewater was demonstrated.
Reservoir operation is a multi-objective optimization problem, and is traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation, named nested DP (nDP), nested SDP (nSDP), nested reinforcement learning (nRL) and their multi-objective (MO) variants, correspondingly MOnDP, MOnSDP and MOnRL. The idea is to include a nested optimization algorithm into each state transition, which reduces the initial problem dimension and alleviates the curse of dimensionality. These algorithms can solve multi-objective optimization problems, without significantly increasing the algorithm complexity or the computational expenses. It can additionally handle dense and irregular variable discretization. All algorithms are coded in Java and were tested on the case study of the Knezevo reservoir in the Republic of Macedonia. Nested optimization algorithms are embedded in a cloud application platform for water resources modeling and optimization. The platform is available 24/7, accessible from everywhere, scalable, distributed, interoperable, and it creates a real-time multiuser collaboration platform. This thesis contributes with new and more powerful algorithms for an optimal reservoir operation and cloud application platform. All source codes are available for public use and can be used by researchers and practitioners to further advance the mentioned areas.
Efficient particle separation in order to meet stringent regulatory standards represent one of the biggest challenges facing the process industry operators today. Emerging environmental problems such as climate change, population growth and natural resource depletion make it more compelling to undertake research into alternative phase separation techniques and optimization of existing ones. Meeting this challenge requires innovative, revolutionary and integrated approach in the design and optimization of various unit processes in fine particle separation. Flocculation is widely used as an effective phase separation technique across many process industries such as water and wastewater treatment and in minerals processing. In this work, a new pre-treatment technique was developed using a patented bench scale reactor unit as a technical proof of concept. Furthermore, the book provides a valuable insight into the hydrodynamics and fluid-particle interactions within the agglomeration units. The relatively high solids content of the stable pellets (approximately 30 %) and very low residual turbidity of the post-sedimentation supernatant (7 NTU) clearly demonstrate the potential of this technique. In addition to significantly improving the subsequent solid-liquid separation efficiency, this study also showed that the effluent can be recycled back into the sewer network or utilized for non-portable reuse. The findings obtained from this research will be extremely useful in the scaling up and optimization of the reactor system.
In this book, first published in 1965, the authors identify the technological opportunities and costs of water recirculation and water quality adjustment in thermal plants, relating them to the possibilities for minimal expenditure and maximum efficiency in the use of water for servicing an entire region with thermal power. Water Demand for Steam Electric Generation will be of interest to students of environmental studies.
The principle of transferable groundwater rights is that by making water rights capable of being traded in the market, water resources can be used more sustainably and efficiently. Groundwater would achieve its economic value, by switching from the high volume-low value irrigation, which is prevalent with many farmers, particularly in South Asia, to low volume-high value urban supply or the growing of intensive horticultural or cash crops. This book discusses transferable groundwater rights in their broader context. It starts with a detailed description of the physical aspects of groundwater, which non-technical readers should find useful, followed by a discussion of legal and economic aspects. Water transfers and the international experiences in transferable groundwater rights are dealt with in detail in two subsequent chapters. A model is presented to guide those involved in water resources management and planning in their decision process to introduce transferable groundwater rights and water rights trading. The author concludes that transferable groundwater rights potentially offer a better alternative to land-based water rights systems. However, he casts serious doubt on whether groundwater rights trading on its own can achieve water resources sustainability, environmental protection and social equity. Government intervention seems to be almost always needed to assist the water rights market and take responsibility for any of its adverse consequences.
Examining the water, development and security linkages in Central Asia can feel a bit like solving a Rubik's cube. The Rubik's cube starts to usually find structure and the different pieces find their places when its solver adopts a systematic approach. Still, solving the whole cube takes time and perseverance. This is also the case with water and security in Central Asia as demonstrated by the chapters in this book. In the case of water and security in Central Asia, there are many "faces", including not only the Central Asian states but also the neighbouring countries and other players of global geopolitics; "stickers" such as policies, practices, causes, and impacts; and "colours" such as the different stakeholders, ranging from the micro and meso levels to the macro level. Understanding all these, or getting clarity on the nexus, can seem extremely challenging. Even though none of the chapters alone answers the question of what constitutes water and security in Central Asia, each of them gives thoughtful ideas and information on the complexity of the issue. This book was published as a special issue of the International Journal of Water Resources Development.
Explore the Health Effects of Fluoride Pollution Fluoride in Drinking Water: Status, Issues, and Solutions establishes the negative impacts of naturally occurring fluoride on human health and considers the depth and scope of fluoride pollution on an international scale. The book discusses current global water quality and fluoride-related issues and draws overall awareness to the problems associated with fluoride in drinking water. Utilizing recent scientific studies to examine the current status of fluoride pollution, it provides a fundamental understanding of fluorosis, describes health problems associated with fluorosis, and discusses viable scientific solutions. The book places special emphasis on India, Africa, China, and other countries deeply affected by fluoride pollution. A single, comprehensive source covering health issues related to fluoride and its effect on humans, this book: Compiles information from scientific literature on the state of fluoride pollution Characterizes the human impacts of fluorosis Provides a comparative evaluation of technologies used for defluoridation Gives a comprehensive account of human health effects with appropriate scientific descriptions and photographs Includes detailed descriptions on the geochemistry of fluoride entry into groundwater aquifers Presents a case study that deals with the successful removal of fluoride from drinking water A vital resource for environmental and public health officials as well as academic researchers in the area, Fluoride in Drinking Water: Status, Issues, and Solutions covers human health issues associated with fluoride-rich water and describes relevant techniques for defluoridation that can be used to overcome the stress, issues, and challenges of natural fluoride in drinking water.
Current Trends and Future Developments on (Bio-) Membranes: Recent Achievements for Ion-Exchange Membranes focuses on introducing and analyzing ion-exchange membranes performance and overviewing recent achievements in the structural development of ion-exchange membranes in various applications. Hence, this book is a key reference text for R&D managers in who are interested in the development of ion-exchange membrane technologies as well as academic researchers and postgraduate students working in the wider area of strategic treatments, separation and purification processes.
Lack of clean water is one of the most important public health challenges in less developed communities. Due to insufficient financial and technical resources in places in need, development of low-cost water treatment technologies can play a key role in sustainable water provision. In this context, this PhD research investigated the removal of pathogenic microorganisms in simple sand filtration set-ups supplemented with low-cost adsorbents (hydrochar) produced via hydrothermal carbonization of biowastes. Two types of hydrochar, derived from hydrothermal carbonization of agricultural residue of maize and stabilized sewage sludge from wastewater treatment plant, were evaluated as adsorbents for Escherichia coli removal in saturated sand columns. The removal efficiency of sand columns amended with these adsorbents improved from 20-70% to ~90 % by alkali activation carried out in room temperatures using 1 M potassium hydroxide solution. This PhD research also demonstrates the removal of human pathogenic viruses in sand columns supplemented with hydrochar adsorbents derived from stabilized sewage sludge and fresh swine waste. In order to enumerate human pathogenic rotavirus and adenovirus in virus removal experiments, low-cost polymerase chain reaction assays were developed under this PhD study. These assays show a competent performance in analyzing virus concentrations in both laboratory and environmental samples. Amendment with either hydrochar (without alkali activation) in sand columns was able to remove more than 99% of both viruses.
Water is intertwined in the daily life of humans in countless ways.
The importance of water as a driver for health, food security, and
quality of life and as a pillar for economic development is unique.
As water affects human lives, the mankind also effects the
hydrological cycle, in all dimensions from the local to the global
scale. Food production accounts for 90% of water use in developing
countries. Hydropower production evokes emotions; yet sustainable
energy production is among cornerstones of economic development.
The damages caused by floods and droughts are escalating all over
the world. The human impacts on ecosystems are increasing as well.
Water is largely a political good since a bulk of the mankind lives
in river basins shared by two or more nations.
The 2015 International Conference on Water Resource and Environment (WRE2015) aims to provide a platform where scholars from different countries can exchange ideas, opinions and views. This book is divided into four main themes: 1. Hydrology and water resources; 2. Water pollution; 3. Water treatment methods, and 4. Freshwater ecosystems. Exploring topics such as water-energy-food nexus, water purification solutions, chemical hydrology, south to north water diversion projects, and the aligning of water resources needs with the conservation of habitats and species, this book is of interest to professionals and academics involved in hydraulic engineering and related fields.
Selenium is an intriguing element as on one hand it is toxic and on the other hand it is a necessary micro-nutrient for humans. It is also a desirable element due to its unique properties and hence it is used in xerogrpahy, rectifiers, solar cells etc. The presence of selenium in agriculture, acid-mine drainage wastewaters is known and their remediation is necessary. Since, selenium is not mined anywhere, it is important to recover the selenium from waste streams. Bio-remediation of selenium containing wastewater is not only efficient but it also gives insight into the fate of selenium in the bioreactors and environment, thus improving the recovery efficiencies. However, there are still many unknowns in the fate of the selenium present in the wastestreams when treated using microbial processes. One of the biggest unknown is the characteristics of biogenic colloidal elemental selenium nanoparticles (BioSeNPs). These BioSeNPs are present in the bioreactors and are colloidal in nature, hence, present in the effluent of the reactor. BioSeNPs are also known to have the coating of organic polymer on its surface, however the origin of these coating are not known. Moreover, these BioSeNPs are always spherical in shape which is desirable in some cases and not so desirable in many. Furthermore, these BioSeNPs are produced extracellularly and also intracellularly, however the effect of the BioSeNPs' trapping in the biomass is not well understood. This book throws light on the above questions and improves our fundamental understanding on the characteristics and fate of BioSeNPs in the bioreactors and environment. This book also uses the fundamental knowledge to improve the bioremediation process and recoverability of selenium. This study demonstrates that extracellular polymeric substances (EPS) are capping the BioSeNPs and thus providing them colloidal stability and hence mobility, which is in contrast to our conventional understanding on the role of EPS in metal(loid) nanoparticles mobility. All the produced BioSeNPs are known to be spherical but nanowire shape is important to understand their fundamental properties and application. Thus, this study produced biogenic selenium nanowires by reduction of selenite by simply using thermophilic temperatures (55 and 65 oC) and characterized them for their magnetization properties. The practical applications of BioSeNPs were explored by preferentially adsorbing heavy metals in the following order: Cu>Zn>Cd. The development of one-step process for selenium oxyanions removal and BioSeNPs recovery using thermophilic UASB reactor and activated sludge process was attempted. Thermophilic reduction of selenate in an upflow anaerobic sludge blanket (UASB) reactor showed better retention of BioSeNPs and thus, higher total selenium removal as compared to mesophilic reactor. The aerobic reduction of selenite using activated sludge also showed better retention of BioSeNPs, however, continuous operation of the reactor was not achieved. The selenite fed activated sludge trapping BioSeNPs showed improved settling properties and hydrophilicity as compared to control sludge.
This book represents a landmark effort to probe and analyze the theory and empirics of designing water disaster management policies. It consists of seven chapters that examine, in-depth and comprehensively, issues that are central to crafting effective policies for water disaster management. The authors use historical surveys, institutional analysis, econometric investigations, empirical case studies, and conceptual-theoretical discussions to clarify and illuminate the complex policy process. The specific topics studied in this book include a review and analysis of key policy areas and research priority areas associated with water disaster management, community participation in disaster risk reduction, the economics and politics of 'green' flood control, probabilistic flood forecasting for flood risk management, polycentric governance and flood risk management, drought management with the aid of dynamic inter-generational preferences, and how social resilience can inform SA/SIA for adaptive planning for climate change in vulnerable areas. A unique feature of this book is its analysis of the causes and consequences of water disasters and efforts to address them successfully through policy-rich, cross-disciplinary and transnational papers. This book is designed to help enrich the sparse discourse on water disaster management policies and galvanize water professionals to craft creative solutions to tackle water disasters efficiently, equitably, and sustainably. This book should also be of considerable use to disaster management professionals, in general, and natural resource policy analysts. This book was published as a special issue of the Journal of Natural Resource Policy Research.
Climate change on earth is having significant impacts on water resources management in Southeast Asia. Knowledge of climate variations and climate change can be valuable for water resources management in agriculture, urban and industrial water supplies, hydroelectric power generation, and ecosystem maintenance. This book presents the findings of case studies on forecasting climate change and its impacts on water availability, irrigation water requirements, floods and droughts, reservoir inflows and hydropower generation, and crop yield in specific basins of Southeast Asian countries such as Thailand, Myanmar, and Vietnam. All case studies start by forecasting the climate change and investigating its impacts by employing several hydrological reservoir simulations and crop water requirement models. The findings provide sound and scientific advice for water managers on the real impacts of climate change and how to adapt to its many challenges.
First published in 1992, this title offers an experienced and constructive evaluation of the ways in which water resources have been developed in Africa. Adams argues that the best hope of productive development lies in working and engaging with local people and using local knowledge of the environment effectively. Modern, large-scale developments that have largely been ineffective are examined, and emphasis is placed on the importance of using the skills and concerns of those affected, such as small farmers, to develop ingenious water projects - an approach that can be applied worldwide. This is an interesting and relevant title, which will be of particular value to those with an interest in the developments in water resource conservation over the past two decades.
Harmful algal blooms (HABs) occurring in freshwater, and the associated toxins they produce, are dangerous to animals and humans. Mitigating the increasing presence of HABs presents a major challenge to water managers and drinking water utilities across the world. This book explores the current research on removal of HABs and toxins from drinking water. It provides the necessary tools so that treatment plant operators, engineers, and water managers can understand the vulnerability of drinking water treatment plants to HABs and develop treatment processes to minimize the impact of these contaminants. Although conventional treatment processes can be effective for the removal of HAB cells and some HAB toxins under optimal conditions, the potential exists for significant breakthrough of toxins during normal operation. As a result, there is a recognized need for more advanced techniques. Possible advanced processes for removing HAB toxins include granular activated carbon (GAC), powdered activated carbon (PAC), or oxidative processes. This book reviews both conventional and advanced treatment processes and presents clear and easy-to-understand procedures for the design of systems for optimal cell or toxin removal.
Urban informal settlements or slums are growing rapidly in cities in sub-Saharan Africa. Most often, a sewer system is not present and the commonly-used low-cost onsite wastewater handling practices, typically pit latrines, are frequently unplanned, uncontrolled and inefficient. Consequently, most households dispose of their untreated or partially treated wastewater on-site, generating high loads of nutrients to groundwater and streams draining these areas. However, the fate of nutrients in urban slums is generally unknown. In excess, these nutrients can cause eutrophication in downstream water bodies. This book provides an understanding of the hydro-geochemical processes affecting the generation, fate and transport of nutrients (nitrogen and phosphorus) in a typical urban slum area in Kampala, Uganda. The approach used combined experimental and modeling techniques, using a large set of hydrochemical and geochemical data collected from shallow groundwater, drainage channels and precipitation. The results show that both nitrogen-containing acid precipitation and domestic wastewater from slum areas are important sources of nutrients in urban slum catchments. For nutrients leaching to groundwater, pit latrines retained over 80% of the nutrient mass input while the underlying alluvial sandy aquifer was also an effective sink of nutrients where nitrogen was removed by denitrification and anaerobic oxidation and phosphorus by adsorption to calcite. In surface water, nutrient attenuation processes are limited. This study argues that groundwater may not be important as regards to eutrophication implying that management interventions in slum areas should primarily focus on nutrients released into drainage channels. This research is of broad interest as urbanization is an ongoing trend and many developing countries lack proper sanitation systems.
Antimicrobial Resistance in Wastewater Treatment Processes Antimicrobial resistance is arguably the greatest threat to worldwide human health. This book evaluates the roles of human water use, treatment and conservation in the development and spread of antimicrobial resistance. Designed as a companion volume to Antimicrobial Resistance in the Environment (Wiley-Blackwell, 2012), this book is a multi-disciplinary synthesis of topics related to antimicrobial resistance and wastewater treatment processes. Antimicrobial Resistance in Wastewater Treatment Processes assembles detailed discussions written by many of the world s best-known experts in microbiology, civil engineering, chemistry, environmental science, public health and related fields. The book presents a collection of subjects that includes: * Current knowledge of the role of the environment in development and spread of antimicrobial resistance * Chemical analysis of antibiotics in environmental samples * Molecular methods for analysis of antimicrobial resistance genes * Advanced wastewater treatment processes and antimicrobial resistance effects * Public perception of risk related to health consequences of antimicrobial resistance * Public health implications of antimicrobial resistance with focus on wastewater treatment processes Antimicrobial resistance has gained a foothold in the global consciousness as a serious public health threat. There is a much greater appreciation for the role of the environment in the dissemination of antimicrobial resistance and the effects of pollutants that can potentially promote development of resistance in bacteria. Contaminants released from wastewater treatment plants are a concern. In Antimicrobial Resistance in Wastewater Treatment Processes, readers will be guided through examinations of the current science related to this important health issue.
The world's fresh water supplies are dwindling rapidly-even wastewater is now considered an asset. By 2025, most of the world's population will be facing serious water stresses and shortages. Aquananotechnology: Global Prospects breaks new ground with its informative and innovative introduction of the application of nanotechnology to the remediation of contaminated water for drinking and industrial use. It provides a comprehensive overview, from a global perspective, of the latest research and developments in the use of nanotechnology for water purification and desalination methods. The book also covers approaches to remediation such as high surface area nanoscale media for adsorption of toxic species, UV treatment of pathogens, and regeneration of saturated media with applications in municipal water supplies, produced water from fracking, ballast water, and more. It also discusses membranes, desalination, sensing, engineered polymers, magnetic nanomaterials, electrospun nanofibers, photocatalysis, endocrine disruptors, and Al13 clusters. It explores physics-based phenomena such as subcritical water and cavitation-induced sonoluminescence, and fog harvesting. With contributions from experts in developed and developing countries, including those with severe contamination, such as China, India, and Pakistan, the book's content spans a wide range of the subject areas that fall under the aquananotechnology banner, either squarely or tangentially. The book strongly emphasizes sorption media, with broad application to a myriad of contaminants-both geogenic and anthropogenic-keeping in mind that it is not enough for water to be potable, it must also be palatable.
Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in seawater reverse osmosis (SWRO) plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of the plant to avoid irreversible fouling of downstream SWRO membranes. As more extra large SWRO plants (>500,000 m3/day) are expected to be constructed in the coming years, frequent chemical cleaning (>1/year) of SWRO installations will not be feasible, and more reliable pre-treatment system will be required. To maintain stable operation in SWRO plants during algal bloom periods, pre-treatment using ultrafiltration (UF) membranes has been proposed. This thesis addresses the effect of algal blooms on the operation of UF pre-treatment and SWRO. Experimental investigations demonstrated that marine algal blooms can impact the backwashability of UF and can accelerate biological fouling in RO. However, it is unlikely that algae themselves are the main causes of fouling but rather the transparent exopolymer particles (TEPs) that they produce. To better monitor TEPs, a new method capable of measuring TEP as small as 10 kDa was developed and showed that TEPs can be effectively removed by UF pre-treatment prior to SWRO. This work also demonstrated that although TEPs and other algal-derived material (AOM) are very sticky and can adhere to UF and RO membranes, adhesion can be much stronger on membranes already fouled with AOM. Moreover, a model was developed to predict the accumulation of algal cells in capillary UF membranes which further demonstrated that the role of algal cells in UF fouling is not as significant as that of AOM and TEPs. Overall, this study demonstrates that better analytical methods and tools are essential in elucidating the adverse impacts of algal blooms in seawater on the operation of membrane-based desalination plants (UF-RO). It also highlighted the importance of developing effective pre-treatment processes to remove AOM from the raw water and reduce the membrane fouling potential of the feed water for downstream SWRO membranes.
Stakeholders' lack of awareness, involvement and participation in the planning and management of water resources and flood risk often creates problems in the acceptance and implementation of proposed measures. Interactions among stakeholders and decision makers build awareness, trust, enhance cooperation and negotiation for best possible measures. The main challenge in stakeholder participation is maintaining the participatory process. Stakeholders' spatial distribution, limitation of financial resources and diverse stakeholders' interest (even opposed) are some of the hindrances in maintaining the participatory process. Addressing these challenges and hindrances, this research developed and implemented three frameworks for developing "Networked Environments for Stakeholder Participation" (NESPs). Networked environments are web-based computer-aided or mobile environments for remote virtual interaction between participating entities such as stakeholders. NESPs are envisioned to enable stakeholder participation by providing sharing of information, planning, negotiating and decision support. NESPs were implemented in five real case studies (1) Lakes of Noord-Brabant, The Netherlands, (2) Danube river (Braila-Isaccea section), Romania, (3) Somes Mare catchment, Romania, (4) Cranbrook catchment, London and (5) Alster catchment, Hamburg, Germany. The overall results of the research show that networked environments can address the challenges and hindrances in stakeholder participation and enhance participation in water resources and flood management.
Groundwater is increasingly subjected to excessive over-exploitation and contamination in many parts of the world. It faces the challenge of balancing its multiple functions in a sustainable manner. This thesis explores several specific problems related to contaminant migration, groundwater-surface water interactions and managed aquifer recharge, using a variety of simulation methods and combined simulation-optimization modelling approaches. The validity of these approaches for evaluating groundwater quantity and quality management options is explored. Case studies were performed on field applications in Belgium, Germany and Oman. The results of these studies demonstrate that better insights and improved groundwater resource management can be achieved through a combination of different simulation and optimization methods that take into account data availability and specific site conditions.
The PhD Thesis covers a review of sanitation technology options for urban slums including existing technologies, their application status and the knowledge gaps. A novel method for selection of sustainable sanitation technologies in urban slums is presented as an alternative to software applications. This method promotes holder participation and ensures sustainability of the selected and implemented sanitation systems. Furthermore, this PhD research provided an insight into the genomic copy concentrations of selected waterborne viruses in a typical urban slum and the magnitude of microbial risks to human health caused by pathogens (bacteria and waterborne viruses through various exposure pathways. The results show that urban slum environments are polluted and the disease burden from each of the exposure routes. In addition, the grey water production in urban slums is more than 80% of the water consumption and the grey water pollutant loads pose potential public health and environmental impacts. The PhD thesis also covers aspects of optimisation of the filtration medium during grey water treatment by uPVC filter columns in series and parallel mode. In addition, the study demonstrated that grey water treatment using a two-step crushed lava rock filter unit at household level in an urban slum is feasible. The grey water pollutant loads reduced by 50% to 80% after grey water treatment. The main conclusions on sanitation in unsewered urban poor areas and recommendations for future research are included in this PhD thesis.
Natural ecosystems are heavily dependent on water, as it is essential to the development of life. The ecology and landscape play an important role in the quality and availability of water. It is no coincidence that exceptional hydrological phenomena are found in protected areas. Such is the case with, for example, the geothermic occurrences (principally, geysers) in America's Yellowstone National Park , the oldest park in the world. The Ramsar wetlands (where the ecosystem's dependency on water is strongly evident), The Iguacu Falls (on the border of Argentina and Brazil), or the Zapata Swamp (the largest of its kind on the Caribbean island of Cuba) further exemplify this point. However, in many cases, the conservation strategies for hydraulic resources in protected areas are ignored, or simply deprived of the attention they require. There are many types of suitable management strategies for planning and protecting our valuable treasures. Hydraulic resource management in protected areas is something that must not be separated from these conservation measures. The first Symposium for the Management of Hydraulic Resources in Protected Areas was intended to be a framework of communication about experiences with water resource management in protected areas. Advances in research and possible solutions to the problems within these areas were discussed. The contributions in this proceedings volume are grouped under seven main themes: Purification and reuse of wastewater in rural communities; Impact of public use on water resources; Vulnerability and risks associated with aquifers, Design and management water resources in protected areas; Research and monitoring of water resources in protected areas; Water and its importance as a source of renewable energy in protected spaces; and Geodiversity and conservation of areas with hydraulic heritage. |
You may like...
Dealing with the Complex Interrelation…
Bambos Charalambous, Chrysi Laspidou
Paperback
R2,475
Discovery Miles 24 750
Post Treatments of Anaerobically Treated…
Vinay Kumar Tyagi, Abid Ali Khan, …
Paperback
R3,770
Discovery Miles 37 700
Implementing the Water-Energy-Food…
Cesar Carmona-Moreno, E. Crestaz, …
Paperback
R1,158
Discovery Miles 11 580
Globalization of Water Governance in…
Vishal Narain, Chanda Gurung Goodrich, …
Hardcover
R3,877
Discovery Miles 38 770
Novel Solutions to Water Pollution
Satinda Ahuja, Kiril Hristovski
Hardcover
R5,417
Discovery Miles 54 170
Water Governance and Civil Society…
N.C. Narayanan, S. Parasuraman, …
Hardcover
R2,532
Discovery Miles 25 320
Land Use and Water Quality: The impacts…
Puangrat Kajitvichyanukul, Brian Arcy
Paperback
R3,035
Discovery Miles 30 350
|