Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The beginnings of human civili zation can be traced back to the time , ne- ly 12 ,000 years ago , when th e early humans gradually ch anged from a life of hunting and gathering food , to producing food. This beginning of pri- tive agriculture ensured a dependable supply of food , and fostered the living together of people in groups and the development of s o c i e ty. During th is time, plant s e e ds were recognized a s a valuable s o ur c e of food and nutrition , and began to be used for growing plants for food. Ever s i n c e , plant seeds have played an important role in the development of the human civilization . Even today, s e e ds of a few crop s p e c i e s , s uc h as the cereals and legume s, are the primary s o u r c e of most human food , and the predominant commodity in international agriculture. Owing to their great importance as food for human s and in international trade , seeds have been a favorite object of s t u d y by developmental biologists and physiologi sts , nutritionist s and chem i sts . A wealth of useful information i s available on th e biology of seed s .
During the past decade, there has been tremendous progress in maize biotechnology. This volume provides an overview of our current knowledge of maize molecular genetics, how it is being used to improve the crop, and future possibilities for crop enhancement. Several chapters deal with genetically engineered traits that are currently, or soon will be, in commercial production. Technical approaches for introducing novel genes into the maize genome, the regeneration of plants from transformed cells, and the creation of transgenic lines for field production are covered. Further, the authors describe how molecular genetic techniques are being used to identify genes and characterize their function, and how these procedures are utilized to develop elite maize germplasm. Moreover, molecular biology and physiological studies of corn as a basis for the improvement of its nutritional and food-making properties are included. Finally, the growing use of corn as biomass for energy production is discussed.
The VI NATO Advanced Study Institute on Plant Molecular Biology, held in Elmau, Bavaria, Germany, from 14 to 23 May, 1990, brought together representative scientific leaders from all over the world to review their lastest results. They presented lectures or posters, participated in lively discussions, educated students, and exchanged views and plans for future research in this highly exciting field of science. The experiments, data and questions were naturally varied, but all of them illustrate that the modern techniques of molecular biology, complemented by developments in immunology, genetics, and ultrastructural research, have pervaded nearly every branch of biology. The presentations show that these approaches have tremendously increased our potential both for fundamental research, our understanding of life, and by analogy to the precedents of physics and chemistry, have led and will continue to lead to "engineering sciences" and implicitly, to new industrial processes. Some of these applications are a matter of debate in the public domain today and many feel that the development of industrial gene technology requires the attention of the whole scientific community. Nevertheless, the implications of this research for the genetic improvement of agricultural plants are profound. Some of the near term technologies being developed provide novel approaches for improving the utility of food crops. They can also result in reduced dependence on the use of pesticides for food production.
The beginnings of human civili zation can be traced back to the time , ne- ly 12 ,000 years ago , when th e early humans gradually ch anged from a life of hunting and gathering food , to producing food. This beginning of pri- tive agriculture ensured a dependable supply of food , and fostered the living together of people in groups and the development of s o c i e ty. During th is time, plant s e e ds were recognized a s a valuable s o ur c e of food and nutrition , and began to be used for growing plants for food. Ever s i n c e , plant seeds have played an important role in the development of the human civilization . Even today, s e e ds of a few crop s p e c i e s , s uc h as the cereals and legume s, are the primary s o u r c e of most human food , and the predominant commodity in international agriculture. Owing to their great importance as food for human s and in international trade , seeds have been a favorite object of s t u d y by developmental biologists and physiologi sts , nutritionist s and chem i sts . A wealth of useful information i s available on th e biology of seed s .
During the past decade, there has been tremendous progress in maize biotechnology. This volume provides an overview of our current knowledge of maize molecular genetics, how it is being used to improve the crop, and future possibilities for crop enhancement. Several chapters deal with genetically engineered traits that are currently, or soon will be, in commercial production. Technical approaches for introducing novel genes into the maize genome, the regeneration of plants from transformed cells, and the creation of transgenic lines for field production are covered. Further, the authors describe how molecular genetic techniques are being used to identify genes and characterize their function, and how these procedures are utilized to develop elite maize germplasm. Moreover, molecular biology and physiological studies of corn as a basis for the improvement of its nutritional and food-making properties are included. Finally, the growing use of corn as biomass for energy production is discussed.
This is an authoritative book that acts as a guide to understanding maize kernel development. Written by a team of experts, it covers topics spanning pre- and post-fertilization events, embryo and endosperm development, grain filling and maturation, and factors influencing crop yield. It explores the significance of maize and other cereal grains, existing hypotheses and research, and important gaps in our knowledge and how we might fill them. This is a valuable resource for researchers of maize and other cereals, and anyone working on basic or applied science in the fields of seed development, plant genetics, and crop physiology.
|
You may like...
|