![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 25 of 43 matches in All Departments
Natural Materials-based Green Composites 1: Plant Fibers explores several important plant fiber-based materials such as wood fibers, vegetable fibers, jute fibers, stalk fibers and hemp fibers. The book provides introductory information and various innovative applications of most important plant fiber-based materials such as wood fibers, vegetable fibers, jute fibers, stalk fibers, and hemp fibers.It investigates their structure and provides various innovative applications and discusses the microstructure of wood and mechanical properties of green wood-based composites (GWC), eco-friendly applications of green composites as building materials, and applications in wastewater treatment. The book also discusses seaweed and cotton fibers for their applications as adhesive and in reinforcement.The book is complemented by Natural Materials-based Green Composites 2: Biomass that deals with a broad range of material types, including natural fiber reinforced polymer composites, particulate composites, fiberboard, wood fiber composites, and plywood composite that utilize natural, renewable, and biodegradable agricultural biomass.
Nutraceuticals: Sources, Processing Methods, Properties, and Applications explores the impact of nutraceutical compounds on human health and their main pharmacological contributions. Broken into three parts, the book addresses nutraceutical production, applications for disease prevention and treatment, and current trends, specifically the role of nutraceuticals in cosmeceuticals and agriculture. With contributions from experienced nutraceutical researchers, and written for nutrition researchers, food scientists, pharmacologists, and those researching and studying related areas, this book will be a welcomed resource for anyone who wishes to understand nutraceuticals in their industry.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Applications of Advanced Nanostructured Materials in Wastewater Remediation reviews recent applications of nanostructured materials for remediation, their preparation, characterization and efficiency for water remediation technologies. The book provides ideas on how nanomaterials are the real solution to water purification or new environmental threat. Sections cover nanomaterial adsorbents, functionalized magnetic nanomaterials, nanostructured polymer hydrogels, carbon nanomaterials, biogenic nanoparticles, green chemistry concepts, aqua defluoridation, and advanced remediation techniques. The book also includes the current status of wastewater treatment using nanomaterials, along with challenges and perspectives for further improvements.
Biomedical Applications of Green Composites reviews the use of green composite materials in drug delivery, with a focus on capsules, resins and ceramides in biomedical fields. Chapters present green composites of polymeric origin and targeted delivery of drugs into various parts of the human body. Other sections in the book cover topics related to the applications of green composites in areas such as antimicrobial agents, pathogen control, surgical applications, dentistry and cancer therapy.
Applications of Next Generation Biosurfactants in the Food Sector provides detailed information on the sustainable approach to the utilization of biosurfactants as a next-generational green biotechnology to mitigate various problems encountered in the food industry. These biosurfactants help to reduce risks such as food spoilage, food poisoning, and post-harvest losses of fruits, vegetable, grains, tubers, cereals and pulses. This book will benefit academics, R&D professionals, and postgrad students in the food science and related fields as they explore recent trends in the application of these green biosurfactants and the many uses they can provide.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents and Extraction Technology provides information on the use of green solvents and their applications in the synthesis of pharmaceutical drugs, energy conversion and storage, catalysis, biodiesel synthesis, multicomponent reactions, waste valorization, and more. The book features introductory chapters related to the applications of green solvents and related extraction technology for sustainable development, including research trends, technical development, environment issues, and related concerns. The book provides examples covering the extraction of nanocellulose (from agricultural wastes), polysaccharides, phenolic compounds, antioxidants (from vegetables), biomolecules and green solvents (from biomass and precious metals).
Green Sustainable Process for Chemical and Environmental Engineering and Science: Natural Materials-Based Green Composites 2: Biomass deals with using biomass in the preparation of green composites and focuses on biomass from agro-industrial waste, geopolymers, natural gums, plants, green algae, etc. The book covers applications in allied areas such as energy and environment that process fuels and chemicals, wastewater treatment, coatings and catalysis. The book deals with a broad range of material types, including natural fiber reinforced polymer composites, particulate composites, fiberboard, wood fiber composites, and plywood composites that utilize natural, renewable, and biodegradable agricultural biomass.The book complements Natural Materials-based Green Composites 1: Plant Fibers that includes introductory information and various innovative applications of most important plant fiber-based materials such as wood fibers, vegetable fibers, jute fibers, stalk fibers, and hemp fibers.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Methods for Producing Smart Packaging covers the latest advances in the development and production of smart packaging. The book addresses issues related to the production of smart packaging, including marketing and environmental impacts of these new products. The book demonstrates how modern packaging goes beyond protecting food against physical, chemical, and biological damage, and that scientific advances now enable producing functional packaging that prolongs product quality, preserves physical and chemical properties, produces greater protection against transportation shocks, and makes food more compact and easily recycled.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Solid-State Energy Storage - A Path to Environmental Sustainability offers an in-depth analysis of the synthesis methods, manufacturing techniques and underlying mechanisms of ionic and electronic-ion transport in various single phase and multi-phase components for electric power storage, such as lithium and sodium ion batteries, sulfur batteries, and lithium-metal electrochemical systems. Though solid-state batteries are not yet available on the market, many large corporations and small companies pursue the goal of implementing this technology for numerous applications and its transfer to other markets.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Recent Advances in Nanocarriers covers nanocarrier synthesis techniques, as well as methods for encapsulating bioactive compounds. The book explores the tests carried out to evaluate their pharmacological properties, in addition to investigating the recent results on clinical tests carried out for some nanocarriers. This book addresses the most recent advances in nanocarriers and their diverse applications in modern medicine for the treatment of diseases and diagnostics. Recent clinical tests that some nanocarriers are undergoing is discussed as well.
Applications of Biosurfactant in Agriculture explores the use of beneficial microorganisms as an alternative to current synthetic plant protection strategies. The book highlights a range of renewable raw substrates including agro-industrial waste as a dependable and cost-effective technology for the mass production of biosurfactant, emphasizes the formulation of biosurfactants using a full-factorial design, scientometric assessment, and presents mathematical modeling for the enhancement of production processes. Recent biotechnological techniques such as functional metagenomics that could help in the molecular characterization of novel biosurfactant with multifunctional activities majorly from uncultured and unexploited microbes available in the soil biosphere are also explored. This book identifies possible modes of action by which nutrients are normally released to plants through the formation of metal-biosurfactant complexes and presents recent research findings on the utilization of biosurfactants for the management of mycotoxins and microorganisms when evaluated in the field and in greenhouses. Finally, the book emphasizes the application of biosurfactants as a form of potent antibiotics for the management of several zoonotic diseases and in animal husbandry.
Green Sustainable Process for Chemical and Environmental Engineering and Science, the latest release in the Green Composites: Preparation, Properties and Allied Applications series, deals with the most promising aspects of green composites. The book presents in-depth and updated literature related to the manufacturing of green composites and their properties and discusses special features of green composites and their applications in daily life. All green composites covered in this work are polymeric and of bio-origin. The book also provides industrial applications of green composites. Topics covered include the use of green composites, vegetable packing, foam, blends, rubber, solar cells, adhesives and 3D printing.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Biomedical Application of Biosurfactant in Medical Sector highlights the numerous applications of biosurfactants in the field of medicine, especially as a replacement to synthetic drugs which have developed several levels of resistance over the years. Special emphasis is laid on their application as non-pyrogenic and non-toxic immunological adjuvants and their inhibitory characteristics against H+, K+, -ATPase and defense against gastric ulcers, along with their practical application as anti-adhesive coating agents for medical insert materials. The book addresses issues by combining knowledge of their production with information on a range of medical applications. Drawing on the knowledge of its expert team of global contributors, this book provides useful insights for all those currently or potentially interested in developing or applying biosurfactants in their own work.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Switchable Solvents explores the preparation, properties, chemical processes and applications of this class of green solvents. The book provides an in-depth overview on the area of switchable solvents in various industrial applications, focusing on the purification and extraction of chemical compounds utilizing green chemistry protocols that include liquid-liquid, solid-liquid, liquid-gas and lipids separation technologies. In addition, it includes recent advances in greener extraction and separation processes. This book will be an invaluable guide to students, professors, scientists and R&D industrial specialists working in the field of sustainable chemistry, organic, analytical, chemical engineering, environmental and pharmaceutical sciences.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Microbially-Derived Biosurfactants for Improving Sustainability in Industry explores the role biosurfactants may play in providing more sustainable, environmentally benign, and economically efficient solutions for mitigating challenges experienced in the industrial sector. Sections cover an introduction to their production and review their application across a broad range of industry applications, from polymer and biofuel production to lubrification and corrosion protection. Drawing on the knowledge of its expert team of global contributors, the book provides useful insights for all those currently or potentially interested in developing or applying biosurfactants in their own work. As awareness and efforts to develop greener products and processes continue to grow in the chemistry community, biosurfactants are garnering much attention for the potential roles they can play, both in reducing the use and production of more toxic products and as tools for addressing existing problems.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Biosurfactants for the Bioremediation of Polluted Environments explores the use of biosurfactants in remediation initiatives, reviewing knowledge surrounding the creation and application of biosurfactants for addressing issues related to the release of toxic substances in ecosystems. Sections cover their production, assessment and optimization for bioremediation, varied pollutant degradation applications, and a range of contaminants and ecological sites. As awareness and efforts to develop greener products and processes continues to grow, biosurfactants are garnering more attention for the potential roles they can play in reducing the use and production of more toxic products. Drawing on the knowledge of its expert team of global contributors, this book provides useful insights for all those currently or potentially interested in developing or applying biosurfactants in their own work.
Microwaves in Organic Synthesis provides an in-depth overview in the area of organic and pharmaceutical chemistry of the microwave technology in separation, purification and extraction of medicinal, biological, and organic compounds.This book methodically explores the application of microwaves in all types of organic synthesis. It includes stereoselectivity, regioselectivity, oxidation, reduction, protection, deprotection, addition, condensation, coupling, C-X bond formation, named reactions, heterocyclic, biological drugs, fluoro-organics and polymers. After a brief introduction discusses the main parameters which influence the process, and the limitations and advantages of the practical use of microwave in organic synthesis. This book is a vital resource on green chemistry technologies for students and academic researchers, R& D professionals, students and university professors working in the field of organic chemistry, medicinal chemistry and chemical engineering.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis provides an in-depth review of the synthesis of inorganic materials utilizing green chemistry protocols. It summarizes the green synthesis methods used for the preparation, processing and development of inorganic materials. The methods for the synthesis of various inorganic materials includes microwaves, sonochemical, electrochemical, bioinspired, enzyme mediated, sol-gel, solid state, etc. It also includes green-solvents driven inorganic material synthesis using ionic liquids, supercritical fluids, plant-derived materials, and microorganisms. The content of this book provides useful information which may be used to inspire the readers to new synthetic routes for sustainable inorganic synthesis. This book brings together panels of highly-accomplished experts in the field of inorganic chemistry. It is a unique book, extremely well structured and essential resource for undergraduate, postgraduate students, faculty, R&D professionals, production chemists, environmental engineers, and industrial experts.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Analytical Techniques for Environmental and Industrial Analysis offers an in-depth overview of analytical tools used in the analysis of environmental and industrial samples. The basic related to the qualitative and quantitative analysis and challenges responsible for analytical methods of analysis are discussed in detail. It also summarizes the spectroscopic tools to study the environmental and industrial samples. It reviews all-types of green analytical tools and methods used for the analysis of soil and sediment, wastewater, toxic organic and inorganic analytes, and biological samples. The analytical methods for the analytes of industrial importance like pharmaceutical industries, food industries, metal, water, and cement industries are discussed. This book provides an overview of the environmental and industrial analysis using green analytical chemistry tools and methodologies usable in environmental, analytical, engineering, pharmaceutical, and industrial sectors.
Green Solvents for Environmental Remediation provides an in-depth overview of environmental remediation by using eutectic solvents, ionic liquids, biosolvents, and switchable solvents, of ionic-liquids, biosolvents, Gas-expanded solvents Liquid polymers, supercritical fluids, Polymer-based green solvents, Switchable solvents, etc. This book offers all-types of green solvents for the removal of contaminations from the soil, air, and water. It summarizes in-depth literature on the application of various green solvents in the areas such as municipal water, extraction, bioremediation, phytoremediation, soil and sediment remediation, toxic gases removal, and various industrial effluents. A brief introduction, limitations, and advantages to the practical use of green solvents are also discussed. This book is authored by experts in a broad range of fields. It is an invaluable reference guide for the sustainable and environmentally friendly development of synthetic methodologies for environmental, analytical, engineering, and industrial technology.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Solvents for the Pharmaceutical Industry aims at providing a detailed overview of applications of green solvents in pharmaceutical industries. It also focuses on providing a detailed literature survey on the green solvents for pharmaceutical analysis, drug design, synthesis, and production, etc. It summarizes the applications of various greens solvents such as water, cyrene, vegetable oils, ionic liquids, ethyl lactate, eutectic solvents, and glycerol in contrast to toxic solvents. This book provides an overview of the use of green solvents for the sustainable and environmentally friendly development of synthetic methodologies for biomedical and pharmaceutical industries.
Advanced Biosensors for Health Care Applications highlights the different types of prognostic and diagnostic biomarkers associated with cancer, diabetes, Alzheimer's disease, brain and retinal diseases, cardiovascular diseases, bacterial infections, as well as various types of electrochemical biosensor techniques used for early detection of the potential biomarkers of these diseases. Many advanced nanomaterials have attracted intense interests with their unique optical and electrical properties, high stability, and good biocompatibility. Based on these properties, advanced nanoparticles have been used as biomolecular carriers, signal producers, and signal amplifiers in biosensor design. Recent studies reported that there are several diagnostic methods available, but the major issue is the sensitivity and selectivity of these approaches. This book outlines the need of novel strategies for developing new systems to retrieve health information of patients in real time. It explores the potential of nano-multidisciplinary science in the design and development of smart sensing technology using micro-nanoelectrodes, novel sensing materials, integration with MEMS, miniaturized transduction systems, novel sensing strategy, that is, FET, CMOS, System-on-a-Chip (SoC), Diagnostic-on-a-Chip (DoC), and Lab-on-a-Chip (LOC), for diagnostics and personalized health-care monitoring. It is a useful handbook for specialists in biotechnology and biochemical engineering.
Green Sustainable Processes for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent provides an in-depth review on the area of green processes for the industry, focusing on the separation, purification and extraction of medicinal, biological and bioactive compounds utilizing supercritical carbon dioxide as a green solvent and their applications in pharmaceuticals, polymers, leather, paper, water filtration, textiles and more. Chapters explore polymerization, polymer composite production, polymer blending, particle production, microcellular foaming, polymer processing using supercritical carbon dioxide, and a method for the production of micro- and nano-scale particles using supercritical carbon dioxide that focuses on the pharmaceutical industry. A brief introduction and limitations to the practical use of supercritical carbon dioxide as a reaction medium are also discussed, as are the applications of supercritical carbon dioxide in the semiconductor processing industry for wafer processing and its advantages and obstacles.
Current Trends and Future Developments on (Bio-) Membranes: Membrane Desalination Systems: The Next Generation explores recent developments and future perspectives in the area of membrane desalination systems. It includes fundamental principles, the different types of smart nano-structured materials, energy and brine disposal issues, design approaches and the environmental impact of membrane desalination technology. The book provides an extensive review of literature in the area of membranes for desalination systems of low energy consumption and discusses the membrane modelling necessary for desalination system validation in achieving high water recovery, low energy and near-zero liquid discharge.
Applications of Nanocomposite Materials in Dentistry presents the study and developments of nano-composite materials for dental applications. Special emphasis is given to the issues related to dental bone regeneration using various types of nano-composite materials, issues of dental failure, antibacterial properties and dental implants. Topics are systematically arranged so that layman can also understand the fundamentals and applications of dental nanocomposites. The book offers a powerful source of exploration on the preparation, characteristics and specific uses of composites in the fields of applied chemistry and medical sciences. |
You may like...
|