![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models. This volume will suit anybody with an int background, while the more theoretical parts require knowledge of probability theory at the measure-theoretical level.
Designed for researchers and students, Nonlinear Times Series: Theory, Methods and Applications with R Examples familiarizes readers with the principles behind nonlinear time series models-without overwhelming them with difficult mathematical developments. By focusing on basic principles and theory, the authors give readers the background required to craft their own stochastic models, numerical methods, and software. They will also be able to assess the advantages and disadvantages of different approaches, and thus be able to choose the right methods for their purposes. The first part can be seen as a crash course on "classical" time series, with a special emphasis on linear state space models and detailed coverage of random coefficient autoregressions, both ARCH and GARCH models. The second part introduces Markov chains, discussing stability, the existence of a stationary distribution, ergodicity, limit theorems, and statistical inference. The book concludes with a self-contained account on nonlinear state space and sequential Monte Carlo methods. An elementary introduction to nonlinear state space modeling and sequential Monte Carlo, this section touches on current topics, from the theory of statistical inference to advanced computational methods. The book can be used as a support to an advanced course on these methods, or an introduction to this field before studying more specialized texts. Several chapters highlight recent developments such as explicit rate of convergence of Markov chains and sequential Monte Carlo techniques. And while the chapters are organized in a logical progression, the three parts can be studied independently. Statistics is not a spectator sport, so the book contains more than 200 exercises to challenge readers. These problems strengthen intellectual muscles strained by the introduction of new theory and go on to extend the theory in significant ways. The book helps readers hone their skills in nonlinear time series analysis and their applications.
This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.
This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained, while all the results are carefully and concisely proven. Bibliographical notes are added at the end of each chapter to provide an overview of the literature. Part I lays the foundations of the theory of Markov chain on general states-space. Part II covers the basic theory of irreducible Markov chains on general states-space, relying heavily on regeneration techniques. These two parts can serve as a text on general state-space applied Markov chain theory. Although the choice of topics is quite different from what is usually covered, where most of the emphasis is put on countable state space, a graduate student should be able to read almost all these developments without any mathematical background deeper than that needed to study countable state space (very little measure theory is required). Part III covers advanced topics on the theory of irreducible Markov chains. The emphasis is on geometric and subgeometric convergence rates and also on computable bounds. Some results appeared for a first time in a book and others are original. Part IV are selected topics on Markov chains, covering mostly hot recent developments.
This book contains contributions from the participants of the international conference “Foundations of Modern Statistics” which took place at Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, during November 6–8, 2019, and at Higher School of Economics (HSE University), Moscow, during November 30, 2019. The events were organized in honor of Professor Vladimir Spokoiny on the occasion of his 60th birthday. Vladimir Spokoiny has pioneered the field of adaptive statistical inference and contributed to a variety of its applications. His more than 30 years of research in the field of mathematical statistics had a great influence on the development of the mathematical theory of statistics to its present state. It has inspired many young researchers to start their research in this exciting field of mathematics. The papers contained in this book reflect the broad field of interests of Vladimir Spokoiny: optimal rates and non-asymptotic bounds in nonparametrics, Bayes approaches from a frequentist point of view, optimization, signal processing, and statistical theory motivated by models in applied fields. Materials prepared by famous scientists contain original scientific results, which makes the publication valuable for researchers working in these fields. The book concludes by a conversation of Vladimir Spokoiny with Markus Reiβ and Enno Mammen. This interview gives some background on the life of Vladimir Spokoiny and his many scientific interests and motivations.
|
You may like...
Competitiveness, Organizational…
Cesar Camison, Tomas Gonzalez
Hardcover
R6,254
Discovery Miles 62 540
The Family Lawyer - 3-in-One Collection
James Patterson
Paperback
(1)
Rapid Response Systems/Fluid…
Michael DeVita, Andrew Sha Andrew Shaw
Hardcover
R1,759
Discovery Miles 17 590
Data Science and Digital Business
Fausto Pedro Garcia Marquez, Benjamin Lev
Hardcover
R4,047
Discovery Miles 40 470
Managerial Decision Making - A Holistic…
Jeffrey Yi-Lin Forrest, Jeananne Nicholls, …
Hardcover
R2,915
Discovery Miles 29 150
|