![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Physics and the Environment directly connects the physical world to environmental issues that the world is facing today and will face in the future. It shows how the first and second laws of thermodynamics limit the efficiencies of fossil fuel energy conversions to less than 100%, while also discussing how clever technologies can enhance overall performance. It also extensively discusses renewable forms of energy, their physical constraints and how we must use science and engineering as tools to solve problems instead of opinion and politics. Dr. Kyle Forinash takes you on a journey of understanding our mature and well developed technologies for using fossil fuel resources and how we are unlikely to see huge gains in their efficiency as well as why their role in climate change ought to be an argument for their replacement sooner rather than later. He also discusses the newest technologies in employing renewable resources and how it is important to understand their physical constrains in order to make a smooth transition to them. An entire chapter is dedicated to energy storage, a core question in renewable energy as well as another chapter on the technical issues of nuclear energy. The book ends with a discussion on how no environmental solution, no matter how clever from a technical aspect, will succeed if there are cheaper alternative, even if those alternatives have undesirable features associated with them.
This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that allows the user to generate and model different physical situations and learn by experimentation. From this standpoint, the book along with the software can also be used as a reference book on PDEs, Fourier series and special functions for students and professionals alike.
Physics and the Environment directly connects the physical world to environmental issues that the world is facing today and will face in the future. It shows how the first and second laws of thermodynamics limit the efficiencies of fossil fuel energy conversions to less than 100%, while also discussing how clever technologies can enhance overall performance. It also extensively discusses renewable forms of energy, their physical constraints and how we must use science and engineering as tools to solve problems instead of opinion and politics. Dr. Kyle Forinash takes you on a journey of understanding our mature and well developed technologies for using fossil fuel resources and how we are unlikely to see huge gains in their efficiency as well as why their role in climate change ought to be an argument for their replacement sooner rather than later. He also discusses the newest technologies in employing renewable resources and how it is important to understand their physical constrains in order to make a smooth transition to them. An entire chapter is dedicated to energy storage, a core question in renewable energy as well as another chapter on the technical issues of nuclear energy. The book ends with a discussion on how no environmental solution, no matter how clever from a technical aspect, will succeed if there are cheaper alternative, even if those alternatives have undesirable features associated with them.
"Foundations of" "Environmental Physics" is designed to focus students on the current energy and environmental problems facing society, and to give them the critical thinking and computational skills needed to sort out potential solutions. From its pedagogical approach, students learn that a simple calculation based on first principles can often reveal the plausibility (or implausibility) of a proposed solution or new technology. Throughout its chapters, the text asks students to apply key concepts to current data (which they are required to locate using the Internet and other sources) to get a clearer picture of the most pressing issues in environmental science. The text begins by exploring how changes in world population impact all aspects of the environment, particularly with respect to energy use. It then discusses what the first and second laws of thermodynamics tell us about renewable and nonrenewable energy; how current energy use is changing the global climate; and how alternative technologies can be evaluated through scientific risk assessment. In approaching real-world problems, students come to understand the physical principles that underlie scientific findings. This informative and engaging textbook offers what prospective scientists, managers, and policymakers need most: the knowledge to understand environmental threats and the skills to find solutions.
|
![]() ![]() You may like...
MONARCHS In Butterfly Town U.S.A…
Patricia Hamilton, Pacific Grove Photographers
Hardcover
R964
Discovery Miles 9 640
|