Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The formation of patterns in developing biological systems involves the spatio-temporal coordination of growth, cell-cell signalling, tissue movement, gene expression and cell differentiation. The interactions of these complex processes are generally nonlinear, and this mathematical modelling and analysis are needed to provide the framework in which to compute the outcome of different hypothesis on modes of interaction and to make experimentally testable predictions. This collection contains papers exploring several aspects of the hierarchy of processes occurring during pattern formation. A number of papers address the modelling of cell movement and deformation, with application to pattern formation within a collection of cells in response to external signalling cues. The results are considered in the context of pattern generation in Dictyostelium discoideum and bacterial colonies. A number of models at the macroscopic level explore the possible mechanisms underlying spatio-temporal pattern generation in early development, focussing on primitive streak, somitogenesis, vertebrate limb development and pigmentation patterning. The latter two applications consider in detail the effects of growth on patterning. The potential of models to generate more complex patterns are considered and models involving different modes of cell-cell signalling are investigated. Pattern selection is analyzed in the context of chemical Turing patterns, which serve as a paradigm for morphogenesis and a model for vegetation patterns is presented.
Guiding readers from the elucidation and analysis of a genomic sequence to the prediction of a protein structure and the identification of the molecular function, Introduction to Bioinformatics describes the rationale and limitations of the bioinformatics methods and tools that can help solve biological problems. Requiring only a limited mathematical and statistical background, the book shows how to efficiently apply these approaches to biological data and evaluate the resulting information. The author, an expert bioinformatics researcher, first addresses the ways of storing and retrieving the enormous amount of biological data produced every day and the methods of decrypting the information encoded by a genome. She then covers the tools that can detect and exploit the evolutionary and functional relationships among biological elements. Subsequent chapters illustrate how to predict the three-dimensional structure of a protein. The book concludes with a discussion of the future of bioinformatics. Even though the future will undoubtedly offer new tools for tackling problems, most of the fundamental aspects of bioinformatics will not change. This resource provides the essential information to understand bioinformatics methods, ultimately facilitating in the solution of biological problems.
Tumour evolution is a complex process involving many different phenomena. Mathematical modelling and computer simulations can help us understand these phenomena, but their development requires a multidisciplinary background-one that includes an understanding of the biological phenomena involved and knowledge of the mathematical techniques used to obtain both qualitative and quantitative results.
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
Dispersal of plants and animals is one of the most fascinating subjects in ecology. It has long been recognized as an important factor affecting ecosystem dynamics. Dispersal is apparently a phenomenon of biological origin; however, because of its complexity, it cannot be studied comprehensively by biological methods alone. Deeper insights into dispersal properties and implications require interdisciplinary approaches involving biologists, ecologists and mathematicians. The purpose of this book is to provide a forum for researches with different backgrounds and expertise and to ensure further advances in the study of dispersal and spatial ecology. This book is unique in its attempt to give an overview of dispersal studies across different spatial scales, such as the scale of individual movement, the population scale and the scale of communities and ecosystems. It is written by top-level experts in the field of dispersal modeling and covers a wide range of problems ranging from the identification of Levy walks in animal movement to the implications of dispersal on an evolutionary timescale.
This volume contains the proceedings of the NATO ARW on 'Biological Pattern Formation' held at Merton College, University of Oxford, on 27-31 August, 1992. The objective of the workshop was to bring together a select group of theoreticians and experimental biologists to present the latest results in the area of biological pattern formation and to foster interactiqn across dis- plines. The workshop was divided into 5 main areas: (i) limb development, (ii) Dictyostelium discoideum, (iii) Drosophila, (iv) cell movement, (v) g- eral pattern formation. We thank all the participants for their contributions, enthusiasm, and willingness to collaborate. There was a genuine, open, and extremely fru- ful interaction between the experimentalists and theoreticians which made the workshop a success. We also thank The Welcome Trust for providing additional funding. The local organization fell mainly on Denise McKittrick and Beverley Bhaskhare at the Mathematical Institute, Oxford, and Jeanette Hudson and the staff of Merton College. We greatly appreciate their help and patience. We also thank Jonathan Sherratt, Wendy Brandts and Debbie Benson for helping out in the conference and for providing a happy welcome to parti- pants on a typically cold, wet and windy English summer day.
The formation of patterns in developing biological systems involves the spatio-temporal coordination of growth, cell-cell signalling, tissue movement, gene expression and cell differentiation. The interactions of these complex processes are generally nonlinear, and this mathematical modelling and analysis are needed to provide the framework in which to compute the outcome of different hypothesis on modes of interaction and to make experimentally testable predictions. This collection contains papers exploring several aspects of the hierarchy of processes occurring during pattern formation. A number of papers address the modelling of cell movement and deformation, with application to pattern formation within a collection of cells in response to external signalling cues. The results are considered in the context of pattern generation in Dictyostelium discoideum and bacterial colonies. A number of models at the macroscopic level explore the possible mechanisms underlying spatio-temporal pattern generation in early development, focussing on primitive streak, somitogenesis, vertebrate limb development and pigmentation patterning.The latter two applications consider in detail the effects of growth on patterning. The potential of models to generate more complex patterns are considered and models involving different modes of cell-cell signalling are investigated. Pattern selection is analyzed in the context of chemical Turing patterns, which serve as a paradigm for morphogenesis and a model for vegetation patterns is presented.
|
You may like...
|