Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China's spacecraft engineering projects. The book's closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.
The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for research using in situ techniques to capture the real-time structural and property responses of materials to surrounding fields using electron, optical and x-ray microscopies (e.g. scanning, transmission and low-energy electron microscopy and scanning probe microscopy) or in the scattering realm with x-ray, neutron and electron diffraction.
Transmission electron microscopy (TEM) is now recognized as a crucial tool in materials science. This book, authored by a team of expert Chinese and international authors, covers many aspects of modern electron microscopy, from the architecture of novel electron microscopes, advanced theories and techniques in TEM and sample preparation, to a variety of hands-on examples of TEM applications. Volume II illustrates the important role that TEM is playing in the development and characterization of advanced materials, including nanostructures, interfacial structures, defects, and macromolecular complexes.
Transmission electron microscopy (TEM) is now recognized as a crucial tool in materials science. This book, authored by a team of expert Chinese and international authors, covers many aspects of modern electron microscopy, from the architecture of novel electron microscopes, advanced theories and techniques in TEM and sample preparation, to a variety of hands-on examples of TEM applications. Volume I concentrates on the newly developed concepts and methods which are making TEM a powerful and indispensible tool in materials science.
This book provides an introduction to the main design principles, methods, procedures, and development trends in spacecraft power systems. It is divided into nine chapters, the first of which covers the classification and main components of primary power system design and power distribution system design. In turn, Chapters 2 to 4 focus on the spacecraft power system design experience and review the latest typical design cases concerning spacecraft power systems in China. More specifically, these chapters also introduce readers to the topological structure and key technologies used in spacecraft power systems. Chapters 5 to 7 address power system reliability and safety design, risk analysis and control, and in-orbit management in China's spacecraft engineering projects. The book's closing chapters provide essential information on new power systems and technologies, such as space nuclear power, micro- and nano-satellite power systems, and space energy interconnection systems. An outlook on future development trends rounds out the coverage.
The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for research using in situ techniques to capture the real-time structural and property responses of materials to surrounding fields using electron, optical and x-ray microscopies (e.g. scanning, transmission and low-energy electron microscopy and scanning probe microscopy) or in the scattering realm with x-ray, neutron and electron diffraction.
Transmission electron microscopy (TEM) is now recognized as a crucial tool in materials science. This book, authored by a team of expert Chinese and international authors, covers many aspects of modern electron microscopy, from the architecture of novel electron microscopes, advanced theories and techniques in TEM and sample preparation, to a variety of hands-on examples of TEM applications.
Transmission electron microscopy (TEM) is now recognized as a crucial tool in materials science. This book, authored by a team of expert Chinese and international authors, covers many aspects of modern electron microscopy, from the architecture of novel electron microscopes, advanced theories and techniques in TEM and sample preparation, to a variety of hands-on examples of TEM applications. Volume II illustrates the important role that TEM is playing in the development and characterization of advanced materials, including nanostructures, interfacial structures, defects, and macromolecular complexes.
|
You may like...
|