![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Agriculture & farming > Agricultural science
This book on SOIL has been written in a very simple and straightforward manner, which is easy to understand by anyone who may have a simple academic background of general science. This book contains the basic properties of soil, which have been distinctly described under separate chapters, which include an Introduction, Physical, Chemical, Mineralogical, and its Biological properties. In addition, a comprehensive descriptive picture of Soil has been presented in the following chapter of Soil survey and classification which brings out the entire philosophy of soil and its classification methodology in a very precise manner. It is based on the Classification System developed in the United States of America and is agreed upon by the Soil Scientists of the most parts of the world. This is an open system and is very viable, because it has a tremendous scope of improvements in future. This is essential when one considers that soil itself is a very dynamic system in nature. Finally the book ends with an insight for Crop production based on its variable properties followed by its last chapter Soil Care. This last chapter aims at the sustainability and productivity of our soil resour world that soil is a living identity and must be used with utmost care. Based on my thirty-eight years of prolonged learning which includes all the theories and the practical aspects of Soil I must say, It is the only natural gift on which all kinds of living things have been depended upon and will continue to depend in future too. So each of us has to remain obliged towards this, which is always under our feet.
This book, first published in 1990 and reprinted here, is a comprehensive, state-of-the art reference on the design principles and management techniques of two primary agricultural irrigation methods. The book presents a systematic approach to the optimal design, management and operation of these two systems. Focusing on the synthesis of the entire design process, the authors present the chapters in the sequence used to design systems with the analytical material presented and demonstrated in a concise manner. For the first time in any book, Sprinkle and Trickle Irrigation offers complete design strategies and presentations for all of the major types of sprinkle and trickle systems: - Periodic-move - Center-pivot - Traveling sprinkler - Linear-moving - Set sprinkler - Drip, spray and line-source Sequential sample calculations that involve the steps in the design of typical irrigation systems are used extensively. As the book progresses, these calculations become more comprehensive and are linked together to form complete design packages for the various types of pressurized systems. The book also presents a section on selecting pressurized irrigation systems, a review of soil-plant-water relationships, unique insight into pipeline hydraulics and economics, design specifications for fertilization and frost control, a glossary and an annotated bibliography of ASAE Standards for Pressurized Irrigation Systems. Sprinkle and Trickle Irrigation is an important practical reference for agricultural engineers, irrigation system designers and agricultural managers, as well as a vital text for professors and researchers in agricultural engineering. "Sprinkle and Trickle Irrigation presents beginning-to-end coverage of the processes and computations needed in the planning and design of sprinkle and trickle irrigation systems. The textbook is created for the thinking person who desires more than cookie-cutter recipes or simple, routine "rule-of-thumb" designs. Rather, the authors of Sprinkle and Trickle Irrigation present concise rationale and philosophy behind each computation formula, figure and table. They decouple "recommended" design parameters into underlying components that can be recoupled at the time of the design to apply to specific cases and situations. In the process, the reader gains visualization skills that allow him/her to peer "inside" an irrigation system, both hydraulically, economically, and operationally. Sprinkle and Trickle Irrigation is a classic design text and reference that should be on every practitioner's desk. The chapters on center-pivot, linear-move and travelling sprinklers go well beyond other current texts. Solid and encompassing economics are infused into all design topics, including application, distribution, and pumping systems. I have lectured out of Sprinkle and Trickle Irrigation for twelve years at the university-senior level. I am confident that all students who completed this design course know not only how to design efficient and effective pressurized irrigation systems, but also know why they use the procedures that they use." Dr. Richard G. Allen, Professor, University of Idaho
As agriculture becomes more mechanized and science increases the possibilities for using inputs to enhance production, the role of PGRs becomes more vital. Plant Growth Regulators in Agriculture and Horticulture provides agriculture professionals and researchers with the information needed to effectively tap these versatile resources to enhance crop production.Through discussions of the "classical five" phytohormones--gibberellins, cytokinins, ethylene, abscisic acid, and auxins--and the growing number of nontraditional PGRs such as oligosaccharins and brassinosteroids, Plant Growth Regulators in Agriculture and Horticulture reviews past and present uses of PGRs in managing crop yield and offers some speculation on future directions.Detailed discussions on the use of PGRs in, for example, grain, ornamental, and citrus crops, introduce readers to strategies for enhancing crop quantity and quality, for improving the postproduction quality of life of perishable plants, and for crop load management, respectively. The book also includes informative visuals, such as tables of common, chemical, and trade names of different commercially available PGRs; diagrams of various PGR processes; as well as before-and-after pictures illustrating the effects of PGRs.Plant Growth Regulators in Agriculture and Horticulture is a comprehensive text covering the role of plant growth regulators in: root formation manipulating yield potential plant stress protection ornamental horticulture postharvest life of ornamentals manipulating fruit development and storage quality citriculture reducing fruit drop bloom-thinning strategiesIf the history of agriculture, which is over 10,000 years old, was condensed into a twenty-four-hour span, science-based plant breeding would be only about fifteen minutes old. Still, the role of PGRs in agriculture is modest compared to other agrochemicals, such as fungicides, herbicides, and insecticides. Plant Growth Regulators in Agriculture and Horticulture is an invaluable guide to the varied roles filled by PGRs in the attainment of higher-quality, better-yielding crops.
The interaction between the fungus Leptosphaeria maculans and oilseed rape (Brassica napus) is becoming an excellent model system for studying genetics of host-pathogen interactions. Leptosphaeria maculans causes phoma stem canker (blackleg) on oilseed rape and other Brassica crops worldwide. Recently, application of molecular techniques has led to increased understanding of the genetics of this hemibiotrophic interaction. The complete sequences of the genomes of L. maculans and B. rapa (comprising the Brassica A genome) will be available soon. This will provide new opportunities to investigate basic metabolic pathways in the host and the pathogen, and detailed knowledge of the disease process. Worldwide, the major strategy for control of phoma stem canker is the use of cultivars with resistance to L. maculans.
This book is a collection of papers presented at the 'Forum "Math-for-Industry" 2016 ' (FMfl2016), held at Queensland University of Technology, Brisbane, Australia, on November 21-23, 2016. The theme for this unique and important event was "Agriculture as a Metaphor for Creativity in All Human Endeavors", and it brought together leading international mathematicians and active researchers from universities and industry to discuss current challenging topics and to promote interactive collaborations between mathematics and industry. The success of agricultural practice relies fundamentally on its interconnections with and dependence on biology and the environment. Both play essential roles, including the biological adaption to cope with environmental challenges of biotic and abiotic stress and global warming. The book highlights the development of mathematics within this framework that successful agricultural practice depends upon and exploits.
This book highlights the latest findings and techniques related to nutrition and feed efficiency in animal agriculture. It addresses the key challenges facing the nutrition industry to achieve high animal productivity with minimal environmental impact. The concept of smart nutrition involves the use of smart technologies in the feeding and management of livestock. The first chapters focus on advances in biological fields such as molecular agriculture and genotype selection, as well as technologies that enhance or enable the collection of relevant information. The next section highlights applications of smart nutrition in a variety of livestock systems, ranging from intensive indoor housing of broilers and pigs to extensive outdoor housing of cattle and sheep, and marine fish farms. Finally, because of the worldwide attention to this issue, the authors address the environmental consequences. This work, which takes a serious look at how nutrition can be used to improve sustainability in animal agriculture, is a key literature for readers in animal and veterinary sciences, the food industry, sustainability research, and agricultural engineering.
Production of food to meet the demands of an ever-increasing human population in the world is the major task and challenge to agriculture today. The conventional methods of plant breeding alone can no longer cope with the situation. The success of any crop improvement program depends on the extent of genetic variability in the base population, but due to denuding of forests and agricultural land, the naturally occurring pool of germplasm is being depleted. An urgent need is therefore ap parent to create new variability and increase the genetic base of agricul tural crops. Agricultural biotechnology has progressed to a stage in the produc tion of plants where specific characteristics to improve their yield, ap pearance, disease-resistance, nutritional quality and adaptation to ad verse soil conditions can be built into the seed. This concept of built-in quality implies a continuous scientific endeavour to improve plant char acters using a wide range of possibilities, and it also implies a scrutiny of the materials and methods available in the world today."
This contributed volume gives a state-of-the-art overview of microplastics and nanoplastics (MPs and NPs) in soils and their relationship with growing plants. Through chapters contributed by a wide variety of researchers, the book offers readers an understanding of MP and NP adsorption, uptake, and effects, as well as implications for trophic transmission, food safety, and security. Cutting-edge topics such as trophic transfer and remediation of MPs and NPs in soil samples are also addressed. The book begins with a primer on terrestrial MPs and NPs, their effects on terrestrial plants, and how these contaminants affect human populations. From there, the volume is split into four sections which address both problems caused by MPs and NPs in soil and potential remediation solutions. The first section deals with the mechanics of how MPs and NPs pollute soils and how toxic chemicals affect the soil profile and its flora, fauna and microbes. The second section of the book discusses trophic transfer of MPs and NPs from roots to shoot, shoot to leaves, and then to fruits. The third section details the threats to humans that are present as a result of MPs and NPs in soils. The fourth and last section gives covers bioremediation techniques that can be employed in order to reclaim polluted soils.
As agriculture becomes more mechanized and science increases the possibilities for using inputs to enhance production, the role of PGRs becomes more vital. Plant Growth Regulators in Agriculture and Horticulture provides agriculture professionals and researchers with the information needed to effectively tap these versatile resources to enhance crop production.Through discussions of the "classical five" phytohormones--gibberellins, cytokinins, ethylene, abscisic acid, and auxins--and the growing number of nontraditional PGRs such as oligosaccharins and brassinosteroids, Plant Growth Regulators in Agriculture and Horticulture reviews past and present uses of PGRs in managing crop yield and offers some speculation on future directions.Detailed discussions on the use of PGRs in, for example, grain, ornamental, and citrus crops, introduce readers to strategies for enhancing crop quantity and quality, for improving the postproduction quality of life of perishable plants, and for crop load management, respectively. The book also includes informative visuals, such as tables of common, chemical, and trade names of different commercially available PGRs; diagrams of various PGR processes; as well as before-and-after pictures illustrating the effects of PGRs.Plant Growth Regulators in Agriculture and Horticulture is a comprehensive text covering the role of plant growth regulators in: root formation manipulating yield potential plant stress protection ornamental horticulture postharvest life of ornamentals manipulating fruit development and storage quality citriculture reducing fruit drop bloom-thinning strategiesIf the history of agriculture, which is over 10,000 years old, was condensed into a twenty-four-hour span, science-based plant breeding would be only about fifteen minutes old. Still, the role of PGRs in agriculture is modest compared to other agrochemicals, such as fungicides, herbicides, and insecticides. Plant Growth Regulators in Agriculture and Horticulture is an invaluable guide to the varied roles filled by PGRs in the attainment of higher-quality, better-yielding crops.
In this book we present ten chapters describing the synthesis and application of nanomaterials for health, food, agriculture and bioremediation. Nanomaterials, with unique properties are now being used to improve food and agricultural production. Research on nanomaterials is indeed revealing new applications that were once thought to be imaginary. Specifically, applications lead to higher crop productivity with nanofertilisers, better packaging, longer food shelf life and better sensing of aromas and contaminants. these applications are needed in particular in poor countries where food is scarce and the water quality bad. Nanotechnology also addresses the age old issue of water polluted by industrial, urban and agricultural pollutants. For instance, research produces nanomaterials that clean water more efficiently than classical methods, thus yielding water for drinking and irrigation. However, some nanomaterials have been found to be toxic. Therefore, nanomaterials should be engineered to be safe for the environment.
Miscanthus is a promising non-food crop yielding high quality lignocellulosic material which can be used in a number of ways, including energy and fibre production, thatching, and industrial use. This book encompasses the results and recommendations arising from extensive trials and experiments carried out by the leading European research organisations and institutions in the field. Much of the research was performed under the auspices of the Miscanthus Productivity Network, established under European Union's Directorate General for Agriculture (DG VI). This book presents expert guidance to growth conditions and breeding of Miscanthus, potential productivity and economics, environmental aspects, and harvesting, storage and utilisation. A guide to this increasingly important subject is long overdue and will be welcomed by all those involved in biomass production and renewable energies, or assessing the potential of Miscanthus as a non-food crop.
Most philosophers still like to feel that they have a special subject matter, well insulated from anything that the social scientists, and scientists in general, have to tell them. That is not healthy for philosophy; and it is all too likely to lead to an ethics that continues, as of old, to plead for its ultimates-the fact that one is totally ineffectual being decently concealed by an impressive terminology. (Stevenson 1963, pp. 114-5) Many so-called moral theories do not even attempt to explain or justify common morality but are used to generate guides to conduct intended to replace common morality. These p- posed moral guides, those generated by all of the standard consequentialist, contractarian, and deontological theories, are far simpler than the common moral system and sometimes yield totally unacceptable answers to moral problems. Since these philosophers who put forward these theories have usually dismissed common morality as confused, they are c- pletely unaware of the complexity involved in making moral decisions and judgments. It is not surprising that many who take morality seriously and try to apply it to real problems faced by actual people are so critical of moral theory. (Bernard Gert 1998, p. 6) As both Stevenson and Gert note, ethics requires social and other sciences for by its very nature, ethics is a practical enterprise.
Heterosis and Hybrid Seed Production in Agronomic Crops discusses how heterosis or "hybrid vigor" has played a major role in improving crop productivity and quality in order to feed the ever-increasing human population, particularly in developing countries. Plant breeders, agronomists, seed producers, and farmers will discover why the development of hybrids in the world's major food crops and why the methods of hybrid seed production are critical for achieving this goal. This landmark book deals with heterosis and hybrid seed production of major agronomic crops such as wheat, rice, maize, sorghum, cotton, sunflower, and rapeseed. Through Heterosis and Hybrid Seed Production in Agronomic Crops, you will discover valuable information on hybrid seed production methods that is not available in any other single volume. This unique book contains relevant and essential information about important procedures to help increase crop yield, including: methods for derivingsecond cycle inbred lines for hybrid maize possibilities for hybrid seed production in wheat techniques of hybrid sorghum seed production production of hybrid seeds using male sterile lines of cotton agronomic management in seed production plots of sunflower seed production technology of hybrid rapeseed advances in hybrid seed production technology of rice in ChinaHeterosis and Hybrid Seed Production in Agronomic Crops gives you a global perspective on essential food crops in all parts of the world. This informative guide will help you use hybrid seed production methods with important agricultural crops and increase the quality of these vital and essential food sources.
This book covers the major findings of almost all types of innovation in agriculture that includes product and process innovation, marketing and organizational innovation, and extended to institutional changes and social welfare in agricultural innovation in Asia. Specially, this book provides the measuring of these types of agricultural innovation on production, economics, and social welfare. Furthermore, this book provides the overview of smart farming in two advanced countries in Asia in this field, which are China and Japan along with its innovation. This book also aims to give an overview on the development of agricultural innovation in the era of digital agriculture over the world.
Development of superior crops that have consistent performance in quality and in quantity has not received the same emphasis in the field of genetics and breeding as merited. Specialty trait requires special focus to propagate. Yet basic germplasm and breeding methodologies optimized to improve crops are often applied in the development of improved specialty types. However, because of the standards required for specialty traits, methods of development and improvement are usually more complex than those for common commodity crops. The same standards of performance are desired, but the genetics of the specialty traits often impose breeding criteria distinct from those of non-specialty possessing crops. Specifically, quality improvement programs have unique characteristics that require careful handling and monitoring during their development for specific needs. Adding value either via alternative products from the large volumes of grain produced or development of specialty types is of interest to producers and processors. This work assimilates the most topical results about quality improvement with contemporary plant breeding approaches.The objective of this book is to provide a summary of the germplasm, methods of development, and specific problems involved for quality breeding. In total, fourteen chapters, written by leading scientists involved in crop improvement research, provide comprehensive coverage of the major factors impacting specialty crop improvement.
The accumulation of large amounts of contaminants occurs in the environment due to industrialization and various other anthropogenic activities. Contaminants ultimately affect human health worldwide. Organic, inorganic, and radioactive substances are the prevalent forms of environmental contaminants and their complete remediation in soils and sediments is rather a difficult task. Concerns of their toxicities led to the emphasis on development of effective techniques to assess the presence and mobility of contaminants in air, water, and soil. Furthermore, the ever-increasing concentration of toxic pollutants in the environment is considered a serious threat to plant, animal, human, and environmental health. Many technologies are in use to clean and eliminate hazardous contaminants from the environment; however, these technologies can be costly, labor intensive, and often distressing to the general public. Phytoremediation is a simple, cost effective, environmentally friendly and fast-emerging new technology for eliminating toxic contaminants from different environments. Phytoremediation refers to the natural ability of certain plants and their associated microbiome (including hyper-accumulators or bio-accumulators) to remove, degrade, or render contaminants harmless. Through this technique, certain species of plants flourish by accumulating contaminants present in the environment. The unique and selective uptake capabilities of plant root and shoot systems, effective translocation, bioaccumulation, and contaminant degradation capabilities of the accumulator plants are utilized in phytoremediation techniques. Phytotechnologies involving the use of plants for contaminant removal gained importance during the last two decades and phytoremediation technology became an effective tool for environmental detoxification because of plants ability to accumulate the contaminants at very high concentrations. Phytoremediation strategies can remove, degrade, or stabilize inorganic and organic contaminants entering a multitude of ecosystems using green plants and their associated microbial communities. The development and use of phytotechnologies continues to move forward at a steady pace. Researchers recognize the potential of phytoremediation to offer a green, cost effective, eco-friendly and feasible application to address some of the world's many environmental challenges. This book provides significant information to add to the previous volumes published on the topic and can serve as the foundation for the development of new applications that feature the integration of modern research discoveries into new methods to remediate contaminated ecosystems. Moreover, this volume brings recent and established knowledge on different aspects of phytoremediation and nano-phytoremediation, providing this information in a single source that offers a cutting-edge synthesis of scientific and experiential knowledge on polluted environments that is useful for policy makers, practitioners and scientists, and engineers. Phytoremediation: Management of Environmental Contaminants, Volume 7 highlights the various prospects that are involved in current global phytoremediation research. This book delivers a content-rich source to the reader and can act as a platform for further research studies. It should meet the needs of all researchers working in, or have an interest in this particular field.
This proceeding covers all the collected research data and presentations from the 8th International Symposium on the Molecular Breeding of Forage and Turf. The book explores themes in molecular breeding of forage and turf, including abiotic and biotic stresses, bioenergy and biorenewables, comparative genomics, emerging tools for forage and turf research, functional genetics and genomics and genetic mapping germplasm, diversity and its impact on breeding, herbage quality, plant-microbe interactions and transgenic and risk assessment. Written by renowned researchers in plant genomics, Molecular Breeding of Forage and Turf: The Proceedings of the 8th International Symposium on the Molecular Breeding of Forage and Turf is a valuable resource for researchers and students in the field of plant genomics.
Early anthropological evidence for plant use as medicine is 60,000 years old as reported from the Neanderthal grave in Iraq. The importance of plants as medicine is further supported by archeological evidence from Asia and the Middle East. Today, around 1.4 billion people in South Asia alone have no access to modern health care, and rely instead on traditional medicine to alleviate various symptoms. On a global basis, approximately 50 to 80 thousand plant species are used either natively or as pharmaceutical derivatives for life-threatening conditions that include diabetes, hypertension and cancers. As the demand for plant-based medicine rises, there is an unmet need to investigate the quality, safety and efficacy of these herbals by the "scientific methods". Current research on drug discovery from medicinal plants involves a multifaceted approach combining botanical, phytochemical, analytical, and molecular techniques. For instance, high throughput robotic screens have been developed by industry; it is now possible to carry out 50,000 tests per day in the search for compounds which act on a key enzyme or a subset of receptors. This and other bioassays thus offer hope that one may eventually identify compounds for treating a variety of diseases or conditions. However, drug development from natural products is not without its problems. Frequent challenges encountered include the procurement of raw materials, the selection and implementation of appropriate high-throughput bioassays, and the scaling-up of preparative procedures. Research scientists should therefore arm themselves with the right tools and knowledge in order to harness the vast potentials of plant-based therapeutics. The main objective of Plant and Human Health is to serve as a comprehensive guide for this endeavor. Volume 1 highlights how humans from specific areas or cultures use indigenous plants. Despite technological developments, herbal drugs still occupy a preferential place in a majority of the population in the third world and have slowly taken roots as alternative medicine in the West. The integration of modern science with traditional uses of herbal drugs is important for our understanding of this ethnobotanical relationship. Volume 2 deals with the phytochemical and molecular characterization of herbal medicine. Specifically, it will focus on the secondary metabolic compounds which afford protection against diseases. Lastly, Volume 3 focuses on the physiological mechanisms by which the active ingredients of medicinal plants serve to improve human health. Together this three-volume collection intends to bridge the gap for herbalists, traditional and modern medical practitioners, and students and researchers in botany and horticulture.
Plant protoplasts have proved to be an excellent tool for in vitro manipu- lations, somatic hybridization, DNA uptake and genetic transformation, and for the induction of somaclonal variation. These studies reflect the far- reaching impact of protoplast alterations for agriculture and forest bio- technology. Taking these aspects into consideration, the series of books on Plant Protoplasts and Genetic Engineering provides a survey of the litera- ture, focusing on recent information and the state of the art in protoplast Plant Protoplasts manipulation and genetic transformation. This book, and Genetic Engineering VI, like the previous five volumes published in 1989,1993, and 1994, is unique in its approach. It comprises 27 chapters dealing with the regeneration of plants from protoplasts, and genetic transformation in various species of Arachis, Bupleurum, Capsella, Dendrobium, Dianthus, Diospyros, Fagopyrum, Festuca, Gentiana, Glycyrrhiza, Gossypium, Hemerocallis, Levisticum, Lonicera, Musa, Physallis, Platanus, Prunus, Saposhnikovia, Solanum, Spinacia, Trititrigia, Tulipa, and Vaccinium; including fruits such as apricot, banana, cranberry, pepino, peach, and plum. This book may be of special interest to advanced students, teachers, and research scientists in the field of plant tissue culture, molecular biology, genetic engineering, plant breeding, and general bio- technology. New Delhi, August 1995 Professor Y. P. S. BAJA] Series Editor Contents Section I Regeneration of Plants from Protoplasts 1. 1 Regeneration of Plants from Protop1asts of Arachis Species (Peanut) Z. LI, R. L. JARRET, and J. W. DEMSKI (With 2 Figures) 1 Introduction ...3 2 Isolation of Pro top lasts ...4 3 Culture of Protoplasts ...
Medicinal Agroecology: Reviews, Case Studies and Research Methodologies presents information on applications of 'green therapies' in restoration towards global sustainability. These practices connect the world of medicinal plants with ecologic farming practice creating a compassionate socio-political worldview and heartfelt scientific research towards food sovereignty and a healthier future on planet Earth. The book communicates benefits of using plant-based solutions to manage the challenges of unsustainable practices in human healthcare, veterinary medicine, agriculture, forestry, and water management. The contributions introduce advances around plants and their active components to potentially treat disease, regulate dysfunction, and balance ecosystems. These practices are explored in further depth through three sections - I. POLICIES & FRAMEWORKS, II. INSIGHTS & OVERVIEWS, III. CASE STUDIES & RESEARCH METHODS. Edited by Immo Fiebrig, Medicinal Agroecology: Reviews, Case Studies and Research Methodologies appeals to those in various disciplines including agriculture and agroecology, healthcare, environmental sciences, and veterinary medicine.
The book discusses the importance of eggplant (Solanum melongena L.) as a crop, highlighting the potential for eggplant to serve as a model for understanding several evolutionary and taxonomic questions. It also explores the genomic make-up, in particular in comparison to other Solanaceous crops, and examines the parallels between eggplant and tomato domestication as well as between the most common eggplant species and two related eggplants native to Africa (Ethiopian eggplant [Solanum aethiopicum L.] and African eggplant [Solanum macrocarpon L.]). The eggplant genome was first sequenced in 2014, and an improved version was due to be released in 2017. Further investigations have revealed the relationships between wild species, domesticated eggplant, and feral weedy eggplant (derived from the domesticate), as well as targets of selection during domestication. Parallels between eggplant and tomato domestication loci are well known and the molecular basis is currently being investigated. Eggplant is a source of nutrition for millions of people worldwide, especially in Southeast Asia where it is a staple food source. Domesticated in the old world, in contrast to its congeners tomato and potato, the eggplant is morphologically and nutritionally diverse. The spread of wild eggplants from Africa is particularly interesting from a cultural point of view. This book brings together diverse fields of research, from bioinformatics to taxonomy to nutrition to allow readers to fully understand eggplant's importance and potential.
Why plant a vegetable garden with the same old tomato and cucumber plants that everyone else has? Small Fruits in the Home Garden is your home gardener?s guide to growing and harvesting small fruit for personal enjoyment. The contributors to this book provide the necessary information and helpful hints for you to grow many new varieties of small fruits, that have wonderful flavor but may not be suitable for commercial production, right at home. Now you can harvest the tastiest varieties at their peak flavor! In Small Fruits in the Home Garden, you?ll see how small fruits can enhance not only your diet, but also your garden and landscape. You?ll learn how strawberry plants, for example, make wonderful perennial borders along paths and walkways and how currants, gooseberrries, and blueberries serve as "edible" hedges that are especially lovely in the summer when their branches are laden with colorful fruit. Each chapter of this unique handbook provides detailed background and growing information on a particular fruit, with special attention to: climate soil pests water table preplant operations planting management pruning fertilizing liming wateringSee how growing and harvesting small fruit can provide you with something nutritious and beautiful that doesn?t demand too much free time. With Small Fruits in the Home Garden, you, too, can easily manage and enjoy small fruit growing.
Molecular farming in plants is a relatively young subject of sciences. As plants can offer an inexpensive and convenient platform for the large-scale production of recombinant proteins with various functions, the driven force from the giant market for recombinant protein pharmaceuticals and industrial enzymes makes this subject grow and advance very quickly. To summarize recent advances, current challenges and future directions in molecular farming, international authorities were invited to write this book for researchers, teachers and students who are interested in this subject. This book, with the focus on the most advanced cutting-edge breakthroughs, covers all the essential aspects of the field of molecular farming in plants: from expression technologies to downstream processing, from products to safety issues, and from current advances and holdups to future developments.
Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerging genome editing for developing resistant varieties in technical crops is imperative for addressing FHEE (food, health, energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The 15 chapters dedicated to 13 technical crops and 2 technical crop groups in this volume will deliberate on different types of biotic stress agents and their effects on and interaction with crop plants; will enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; will brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; will enunciate the success stories of genetic engineering for developing biotic stress resistant varieties; will discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; will enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and quality; and will also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops. |
You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
|