![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Agriculture & farming > Agricultural science
This book mainly presents the current state of knowledge on the use of of Silicon (Si) in agriculture, including plants, soils and fertilizers. At the same time, it discusses the future interdisciplinary research that will be needed to further our knowledge and potential applications of Si in agriculture and in the environmental sciences in general. As the second most abundant element both on the surface of the Earth's crust and in soils, Si is an agronomically essential or quasi-essential element for improving the yield and quality of crops. Addressing the use of Si in agriculture in both theory and practice, the book is primarily intended for graduate students and researchers in various fields of the agricultural, biological, and environmental sciences, as well as for agronomic and fertilizer industry experts and advisors. Dr. Yongchao Liang is a full professor at the College of Environmental and Resource Sciences of the Zhejiang University, Hangzhou, China. Dr. Miroslav Nikolic is a research professor at the Institute for Multidisciplinary Research of the University of Belgrade, Serbia. Dr. Richard Belanger is a full professor at the Department of Plant Pathology of the Laval University, Canada and holder of a Canada Research Chair in plant protection. Dr. Haijun Gong is a full professor at College of Horticulture, Northwest A&F University, China. Dr. Alin Song is an associate professor at Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
Abiotic stresses such as high temperature, low-temperature, drought, and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (most studies are Arabidopsis and rice genome) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence and salinity signals is still a major question before plant biologists. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving not only one gene family but multiple genes or gene families, plant biologists can lay a foundation for designing and generating future crops that can withstand the higher degree of environmental stresses (especially abiotic stresses, which are the major cause of crop loss throughout the world) without losing crop yield and productivity. Therefore, in this proposed book, we intend to incorporate the contribution from leading plant biologists to elucidate several aspects of stress signaling by functional genomic approaches.
This book provides an introduction to operational research methods and their application in the agrifood and environmental sectors. It explains the need for multicriteria decision analysis and teaches users how to use recent advances in multicriteria and clustering classification techniques in practice. Further, it presents some of the most common methodologies for statistical analysis and mathematical modeling, and discusses in detail ten examples that explain and show “hands-on” how operational research can be used in key decision-making processes at enterprises in the agricultural food and environmental industries. As such, the book offers a valuable resource especially well suited as a textbook for postgraduate courses.
In view of the grave consequences of soil degradation on ecosystem functions, food security, biodiversity and human health, this book covers the extent, causes, processes and impacts of global soil degradation, and processes for improvement of degraded soils. Soil conservation measures, including soil amendments, decompaction, mulching, cover cropping, crop rotation, green manuring, contour farming, strip cropping, alley cropping, surface roughening, windbreaks, terracing, sloping agricultural land technology (SALT), dune stabilization, etc., are discussed. Particular emphasis is given to soil pollution and the methods of physical, chemical and biological remediation of polluted soils. This book will lead the reader from the basics to a comprehensive understanding of soil degradation, conservation and remediation.
Mulberry (Morus spp.) is an important horticultural plant in the sericulture industry. It belongs to the family Moraceae. The leaf of mulberry is used to feed the silkworm Bombyx mori L. It is also used as a fodder. Due to its economic and agricultural importance, mulberry is cultivated in many parts of the world. An estimated 60% of the total cost of silk cocoon production is for production and maintenance of mulberry plants. Therefore, much attention is needed to improve the quality and quantity of mulberry leaves. It is vital to increase the production of superior quality mulberry leaves with high nutritive value for the sericulture industry. Although a lot of research is going on in mulberry, very little effort has been made to compile the results of this research in a single book. This book provides an update of recent research works going on in this plant. It describes the taxonomy, conservation of germplasm, genetic diversity of various mulberry species, application of breeding techniques to improve the quality of mulberry, in vitro conservation, application of tissue culture techniques to improve mulberry species, production of haploids and triploids in mulberry and improvement of abiotic stress adaptive traits in mulberry with relevance to adaptiveness to global warming.
Increasing world population, unpredictable climate and various kind of biotic and abiotic stresses necessitate the sustainable increase in crop production through developing improved cultivars possessing enhanced genetic resilience against all odds. An exploration of these challenges and near possible solution to improve yield is addressed in this book. It comprehensively and coherently reviews the application of various aspect of rapidly growing omics technology including genomics, proteomics, transcriptomics and metabolomics for crop development. It provides detailed examination of how omics can help crop science and introduces the benefits of using these technologies to enhance crop production, resistance and other values. It also provides platform to ponder upon the integrative approach of omics to deal with complex biological problems. The book highlights crop improvement such as yield enhancement, biotic and abiotic resistance, genetic modification, bioremediation, food security etc. It explores how the different omics technology independently and collectively would be used to improve the quantitative and qualitative traits of crop plants. The book is useful for graduate and post-graduate students of life science including researchers who are keen to know about the application of omics technologies in the different area of plant science. This book is also an asset to the modern plant breeders, and agriculture biotechnologist.
This book provides a timely review of concepts in plant disease management involving microbial soil suppressiveness and organic amendments. Topics discussed include the impact of suppressive soils on plant pathogens and agricultural productivity, the enhancement of soil suppressiveness through the application of compost and the development of disease suppressive soils through agronomic management. Further chapters describe diseases caused by phytopathogens, such as Pythium, Fusarium and Rhizoctonia, interaction of rhizobia with soil suppressiveness factors, biocontrol of plant parasitic nematodes by fungi and soil suppressive microorganisms.
Over the past two decades, how has urban agriculture changed in sub-Saharan Africa? Is city farming now better integrated into environmental management and city governance? And, looking ahead, how might urban agriculture address the needs of the low-income households and modernizing cities of Africa? In this book, leading specialists in the fields of urban agriculture and urban environment present a unique collection of case studies that examines the growing role of local food production in urban livelihoods in sub-Saharan Africa. Amongst many issues, the authors probe the changing role of urban agriculture, the risks and benefits of crop-livestock systems, and the opportunities for making locally produced food more easily available and more profitable. Concluding chapters reflect on the policy and governance implications of greater integration of urban natural resources and the built environment, an expanded role for urban agriculture in sub-Saharan Africa and the crucial role of women in urban food systems. "African Urban Harvest" will be of interest to decision-makers, development professionals, researchers, academics, and students and educators in urban planning, development studies, African studies, and environmental studies.
Ascorbic acid (AsA), vitamin C, is one of the most abundant water-soluble antioxidant in plants and animals. In plants AsA serves as a major redox buffer and regulates various physiological processes controlling growth, development, and stress tolerance. Recent studies on AsA homeostasis have broadened our understanding of these physiological events. At the mechanistic level, AsA has been shown to participate in numerous metabolic and cell signaling processes, and the dynamic relationship between AsA and reactive oxygen species (ROS) has been well documented. Being a major component of the ascorbate-glutathione (AsA-GSH) cycle, AsA helps to modulate oxidative stress in plants by controlling ROS detoxification alone and in co-operation with glutathione. In contrast to the single pathway responsible for AsA biosynthesis in animals, plants utilize multiple pathways to synthesize AsA, perhaps reflecting the importance of this molecule to plant health. Any fluctuations, increases or decreases, in cellular AsA levels can have profound effects on plant growth and development, as AsA is associated with the regulation of the cell cycle, redox signaling, enzyme function and defense gene expression. Although there has been significant progress made investigating the multiple roles AsA plays in stress tolerance, many aspects of AsA-mediated physiological responses require additional research if AsA metabolism is to be manipulated to enhance stress-tolerance. This book summarizes the roles of AsA that are directly or indirectly involved in the metabolic processes and physiological functions of plants. Key topics include AsA biosynthesis and metabolism, compartmentation and transport, AsA-mediated ROS detoxification, as well as AsA signaling functions in plant growth, development and responses to environmental stresses. The main objective of this volume is therefore to supply comprehensive and up-to-date information for students, scholars and scientists interested in or currently engaged in AsA research.
Allelopathy is an ecological phenomenon by which plants release organic chemicals (allelochemicals) into the environment influencing the growth and survival of other organisms. In this book, leading scientists in the field synthesize latest developments in allelopathy research with a special emphasis on its application in sustainable agriculture. The following topics are highlighted: Ecological implications, such as the role of allelopathy during the invasion of alien plant species; regional experiences with the application of allelopathy in agricultural systems and pest management; the use of microscopy for modeling allelopathy; allelopathy and abiotic stress tolerance; host allelopathy and arbuscular mycorrhizal fungi; allelopathic interaction with plant nutrition; and the molecular mechanisms of allelopathy. This book is an invaluable source of information for scientists, teachers and advanced students in the fields of plant physiology, agriculture, ecology, environmental sciences, and molecular biology.
This book addresses the impacts of current and future reproductive technologies on our world food production and provides a significant contribution to the importance of research in the area of reproductive physiology that has never been compiled before. It would provide a unique opportunity to separate the impacts of how reproductive technologies have affected different species and their contributions to food production. Lastly, no publication has been compiled that demonstrates the relationship between developments in reproductive management tools and food production that may be used a reference for scientists in addressing future research areas. During the past 50 years assisted reproductive technologies have been developed and refined to increase the number and quality of offspring from genetically superior farm animal livestock species. Artificial insemination (AI), estrous synchronization and fixed-time AI, semen and embryo cryopreservation, multiple ovulation and embryo transfer (MOET), in vitro fertilization, sex determination of sperm or embryos, and nuclear transfer are technologies that are used to enhance the production efficiency of livestock species.
This book serves the larger community of plant researchers working on the taxonomy, species delimitation, phylogeny, and biogeography of pseudo-cereals, with a special emphasis on amaranths. It also provides extensive information on the nutritive value of underutilized pseudo-cereals, the goal being to broaden the vegetable list. Amaranthus is a cosmopolitan genus of annual or short-lived perennial plants. Most of the species are summer annual weeds and are commonly referred to as pigweed. Only a few are cultivated as vitamin-rich vegetables and ornamentals. The protein-rich seeds of a handful of species, known as grain amaranths, are consumed as pseudo-cereals. Amaranthusmanifests considerable morphological diversity among and even within certain species, and there is no general agreement on the taxonomy or number of species. Currently the genus Amaranthus is believed to include three recognized subgenera and 70 species. Amatanthus is considered to potentially offer an alternative crop in temperate and tropical climate. The classification of amaranths is ambiguous due to the lack of discrete and quantitative species-defining characteristics and the wide range of phenotypic plasticity, as well as introgression and hybridization involving weedy and crop species. It is a known fact that both vegetable and grain amaranths have evolved from their respective weed progenitors. There are more than 180 different weed species that are herbicide-resistant, and amaranths are considered to be leading members of the resistant biotypes. Amaranth species provide ample scope for investigating herbicide resistance mechanisms. Amaranths also show variability in terms of their mating behavior and germplasm, adaptability to different growing conditions, and wide range of variability in sexual systems, from monoecy to dioecy. A solid grasp of these parameters is essential to the future utilization of amaranths as super crops. There are quite a few amaranth research center and germplasm collections all over the world that maintain and evaluate working germplasms. To date, the genetic improvement of amaranths has primarily involved the application of conventional selection methods. But advances in genomics and biotechnology have dramatically enriched the potential to manipulate the amaranth genome, especially improving the amount and availability of nutrients. In conclusion, the book covers all aspects of amaranths, including their food value, significance as vegetables and pseudo-cereals, taxonomy, phylogeny, germplasm variability, breeding behavior and strategies, cultivation practices, and variability in terms of their sexual systems. It offers a valuable resource for all students, researchers and experts working in the field of plant taxonomy and diversity.
This book tackles the issue of using crop rotation to increase food production and secure it for the growing population of the future. Crop rotation can be a solution of food gaps in the developing counties. Crop rotation plays an important role in attaining soil sustainability and in controlling pests and weeds. It can alleviate damage caused by climate change by reducing losses in productivity of the crops, minimizing soil fertility loss and increase irrigation water productivity. This book also includes the reviews of a large number of crop rotations that have been published internationally, and additionally, the crop rotations that have been implemented in Egypt have a unique characteristic to them and therefore, a large number of those reviews have also been included.
This book focuses on the conventional breeding approach, and on the latest high-throughput genomics tools and genetic engineering / biotechnological interventions used to improve rice quality. It is the first book to exclusively focus on rice as a major food crop and the application of genomics and genetic engineering approaches to achieve enhanced rice quality in terms of tolerance to various abiotic stresses, resistance to biotic stresses, herbicide resistance, nutritional value, photosynthetic performance, nitrogen use efficiency, and grain yield. The range of topics is quite broad and exhaustive, making the book an essential reference guide for researchers and scientists around the globe who are working in the field of rice genomics and biotechnology. In addition, it provides a road map for rice quality improvement that plant breeders and agriculturists can actively consult to achieve better crop production.
This book evaluates the history, the present and the future of water markets on 5 continents, beginning with the institutional underpinnings of water markets and factors influencing transaction costs. The book examines markets in seven countries and three different U.S. states, ranging from village-level water markets in Oman to basin wide formal water markets in Australia's Murray-Darling River basin. Introductory chapters on the background of water markets and on transaction costs and policy design are followed by chapter length discussion of water markets as an adaptive response to climate change and of supply reliability in a changing climate. Case studies describe a variety of facets of the design and function of markets around the world: California, Chile, Spain, Oman, Australia, Canada, India and China. In analyzing these real-world examples of markets, the contributors explore water rights and trading of rights between agricultural and urban sectors and the principles and function of option markets. They discuss different sized approaches, from large scale, ministry-level administration of markets to informal arrangements among farmers in the same village, or groups of villages which allocate water without large investment in management and infrastructure. Discussion includes questions of why water market practices have not expanded more rapidly in arid places. The book discusses mechanisms for resolving conflicts between water rights holders as well as between water right holders and third parties impacted by water trades and whether or not public ownership of water rights or use rights should trump private ownership and under what condition. Also covered are new and expanding categories of water use, beyond human consumption, agriculture and industry to new technologies ranging from extracting natural gas from shale to producing biofuels. The book concludes with suggestions for future water markets and offers a realistic picture of how they might change water use and distribution practices going forward.
"Soil as World Heritage" celebrates a half century of field experiments on the Balti Steppe, in Moldova - where Dokuchaev first described the Typical Chernozem in 1877, protected from the elements by a unique system of shelter belts designed by the great man, and now provisionally listed as the first World Heritage Site for soil. The book presents contributions to the 2012 international symposium attended by researchers, practitioners and policy makers from the European Commission and countries as diverse as Belarus, Bulgaria, the Czech Republic, France, Germany, Italy, the Netherlands, Romania, Russia, Ukraine, United Kingdom, USA and, of course, Moldova itself. The experimental data demonstrate the damage caused by human activity to the productivity and integrity of the black earth and, also, ways to restore its fertility. Results from even longer-established trials worldwide also demonstrate that agricultural practices are driving global warming, leaching of nutrients, pollution of water resources, diversion of rainfall away from replenishment of soil and groundwater to destructive runoff, and destroying soil organic matter and biodiversity. These are pressing issues for our generation and will press harder on future generations. Long-term field experiments, and the scientific skills and experience that they nurture, will be more and more valuable as a foundation and focus for interdisciplinary teams studying the effects of farming practices on the soil and soil life so as to devise a sustainable alternative. Europe-wide and worldwide contributions also discuss economic incentives - carbon and green water credits - which themselves require robust supporting data, and legislative aspects of promoting more sustainable farming systems. The outcomes of the conference include recommendations for institutional support for sustainable farming and a draft of the law on land and soil management for the Parliament of Moldova."
This book reviews the history, current state of knowledge, and different research approaches and techniques of studies on interactions between humans and plants in an important area of agriculture and ongoing plant domestication: Mesoamerica. Leading scholars and key research groups in Mexico discuss essential topics as well as contributions from international research groups that have conducted studies on ethnobotany and domestication of plants in the region. Such a convocation will produce an interesting discussion about future investigation and conservation of regional human cultures, genetic resources, and cultural and ecological processes that are critical for global sustainability.
Plant microbe interaction is a complex relationship that can have various beneficial impacts on both the communities. An urgent need of today's world is to get high crop yields in an ecofriendly manner. Utilization of beneficial and multifaceted plant growth promoting (PGP) microorganisms can solve the problem of getting enhanced yields without disturbing the ecosystem thus leading to sustainability. For this to achieve understanding of the intricate details of how the beneficial microbes form associations with the host plant and sustain that for millions of years must be known. A holistic approach is required wherein the diversity of microbes associated with plant and the network of mechanisms by which they benefit the host must be studied and utilized. 'Plant Microbe Symbiosis - Fundamentals and Advances' provides a comprehensive understanding of positive interactions that occur between plant and microorganisms and their utilization in the fields. The book reviews the enormous diversity of plant associated microbes, the dialog between plant-microbes-microbes and mechanisms of action of PGP microbes. Utilization of PGPRs as nutrient providers, in combating phytopathogens and ameliorating the stressed and polluted soils is also explained. Importantly, the book also throws light on the unanswered questions and future direction of research in the field. It illustrates how the basic knowledge can be amalgamated with advanced technology to design the future bioformulations.
This volume presents a state-of-the-art overview of the rapidly evolving field of agribusiness, highlighting the most current issues, concepts, trends and themes in research, practice and policy. With a particular emphasis on technology, product and process innovation, the authors cover a wide array of topics relating to such issues as research and development, technology transfer and patents and licensing, with particular respect to the roles of academic institutions, private organizations and public agencies in generating and disseminating knowledge. Featuring case studies of innovative initiatives across the industry, this book will appeal to researchers, business leaders, university administrators and policymakers concerned with the multi-faceted implications of this dynamic and controversial sector.
This book examines the successful private, public and civil society models of agriculture value chains in India and addresses relevant challenges and opportunities to improve their efficiency and inclusiveness. It promotes the value-chain approach as a tool to improve access to finance for small holder farmers and discusses the possible structure of and regulatory framework for the 'National Common Agricultural Market'- a term that featured in the Indian Finance Minister's 2014-15 budget speech, and which is aimed towards standardizing and improving transparency in agricultural trade practices across states under a single licensing system. The book deliberates on the potential of developing innovative financial instruments into the value chain framework by supporting tripartite agreements between producers, lead firms and financial institutions. Its fourteen chapters are divided into three parts-Agriculture Value Chain Financing: Theoretical Framework, Agriculture Value Chain Financing in Cases of Select Commodities; and Institutional Framework for Agriculture Value Chain Financing. Since the concept of value chain financing is being considered as a future policy agenda, the book is of great interest to corporations dealing with agricultural inputs and outputs; commercial, regional, rural and cooperative banks; policy makers; academicians and NGOs. |
![]() ![]() You may like...
Analytical Methods for Agricultural…
Britt Maestroni, Victoria Ochoa, …
Paperback
R5,086
Discovery Miles 50 860
Working with Dynamic Crop Models…
Daniel Wallach, David Makowski, …
Hardcover
Innovation in the Food Sector Through…
Ana Novo de Barros, Irene Gouvinhas
Hardcover
R3,949
Discovery Miles 39 490
Soybeans - Chemistry, Production…
Lawrence A. Johnson, Pamela J White, …
Hardcover
R4,916
Discovery Miles 49 160
Nature and Properties of Soils, The…
Raymond Weil, Nyle Brady
Paperback
R2,386
Discovery Miles 23 860
|