![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Agriculture & farming > Agricultural science
This book provides an up-to-date review and analysis of the carrot's nuclear and organellar genome structure and evolution. In addition, it highlights applications of carrot genomic information to elucidate the carrot's natural and agricultural history, reproductive biology, and the genetic basis of traits important in agriculture and human health. The carrot genome was sequenced in 2016, and its relatively small diploid genome, combined with the fact that it is the most complete root crop genome released to date and the first-ever Euasterid II genome to be sequenced, mean the carrot has an important role in the study of plant development and evolution. In addition, the carrot is among the top ten vegetables grown worldwide, and the abundant orange provitamin A carotenoids that account for its familiar orange color make it the richest crop source of vitamin A in the US diet, and in much of the world. This book includes the latest genetic maps, genetic tools and resources, and covers advances in genetic engineering that are relevant for plant breeders and biologists alike.
This new textbook and lab manual on remote sensing and digital image processing of natural resources includes numerous practical, problem-solving exercises, and case studies that use the free and open-source platform R. It explains the basic concepts of remote sensing and its multidisciplinary applications using R language and R packages, and engages students in learning theory through hands-on real-life projects. Features 1. Aims to expand theoretical approaches of remote sensing and digital image processing through multidisciplinary applications using R and R packages. 2. Engages students in learning theory through hands-on real-life projects. 3. All chapters are structured with solved exercises and homework and encourages readers to understand the potential and the limitations of the environments. 4. Covers data analysis in free and open-source (FOSS) R platform, which makes remote sensing accessible to anyone with a computer. 5. Explores current trends and developments in remote sensing in homework assignments with data to further explore the use of free multispectral remote sensing data, including very high spatial resolution information. Students in upper-level undergraduate or graduate programs with Remote Sensing Course and Geoprocessing Course, civil and environmental engineering, geosciences, and environmental sciences, electrical engineering, biology, hydrology, agriculture Engineering. Professionals in different areas who use remote sensing and image processing. Students in upper-level undergraduate or graduate programs taking courses in Remote Sensing and Geoprocessing, civil and environmental engineering, geosciences, and environmental sciences, electrical engineering, biology, hydrology, agricultural engineering, as well as professionals in different areas who use remote sensing and image processing, will gain a deeper understanding and first-hand experience with remote sensing and digital processing, with a learn-by-doing methodology using applicable examples in natural resources. .
Early anthropological evidence for plant use as medicine is 60,000 years old as reported from the Neanderthal grave in Iraq. The importance of plants as medicine is further supported by archeological evidence from Asia and the Middle East. Today, around 1.4 billion people in South Asia alone have no access to modern health care, and rely instead on traditional medicine to alleviate various symptoms. On a global basis, approximately 50 to 80 thousand plant species are used either natively or as pharmaceutical derivatives for life-threatening conditions that include diabetes, hypertension and cancers. As the demand for plant-based medicine rises, there is an unmet need to investigate the quality, safety and efficacy of these herbals by the "scientific methods". Current research on drug discovery from medicinal plants involves a multifaceted approach combining botanical, phytochemical, analytical, and molecular techniques. For instance, high throughput robotic screens have been developed by industry; it is now possible to carry out 50,000 tests per day in the search for compounds, which act on a key enzyme or a subset of receptors. This and other bioassays thus offer hope that one may eventually identify compounds for treating a variety of diseases or conditions. However, drug development from natural products is not without its problems. Frequent challenges encountered include the procurement of raw materials, the selection and implementation of appropriate high-throughput bioassays, and the scaling-up of preparative procedures. Research scientists should therefore arm themselves with the right tools and knowledge in order to harness the vast potentials of plant-based therapeutics. The main objective of Plant and Human Health is to serve as a comprehensive guide for this endeavor. Volume 1 highlights how humans from specific areas or cultures use indigenous plants. Despite technological developments, herbal drugs still occupy a preferential place in a majority of the population in the third world and have slowly taken roots as alternative medicine in the West. The integration of modern science with traditional uses of herbal drugs is important for our understanding of this ethnobotanical relationship. Volume 2 deals with the phytochemical and molecular characterization of herbal medicine. Specifically, it focuess on the secondary metabolic compounds, which afford protection against diseases. Lastly, Volume 3 discusses the physiological mechanisms by which the active ingredients of medicinal plants serve to improve human health. Together this three-volume collection intends to bridge the gap for herbalists, traditional and modern medical practitioners, and students and researchers in botany and horticulture.
This book gathers contributions on modern irrigation environments in Egypt from an environmental and agricultural perspective. Written by leading experts in the field, it discusses a wide variety of modern irrigation problems. In the context of water resources management in Egypt, one fundamental problem is the gap between growing water demand and limited supply. As such, improving irrigation systems and providing farmers with better control over water are crucial to increasing productivity. The book presents state-of-the-art technologies and techniques that can be effectively used to address a range of problems in modern irrigation, as well as the latest research advances. Focusing on water sensing and information technologies, automated irrigation technologies, and improved irrigation efficiency. It brings together a team of experts who share their personal experiences, describe the various applications, present recent advances, and discuss possibilities for interdisciplinary collaboration and implementing the techniques covered
Fungi range from being microscopic, single-celled yeasts to multicellular and heterotrophic in nature. Fungal communities have been found in vast ranges of environmental conditions. They can be associated with plants epiphytically, endophytically, or rhizospherically. Extreme environments represent unique ecosystems that harbor novel biodiversity of fungal communities. Interest in the exploration of fungal diversity has been spurred by the fact that fungi perform numerous functions integral in sustaining the biosphere, ranging from nutrient cycling to environmental detoxification, which involves processes like augmentation, supplementation, and recycling of plant nutrients--a particularly important process in sustainable agriculture. Fungal communities from natural and extreme habitats help promote plant growth, enhance crop yield, and soil fertility via direct or indirect plant growth promoting (PGP) mechanisms of solubilization of phosphorus, potassium, and zinc, production of ammonia, hydrogen cyanides, phytohormones, Fe-chelating compounds, extracellular hydrolytic enzymes, and bioactive secondary metabolites. These PGP fungi could be used as biofertilizers, bioinoculants, and biocontrol agents in place of chemical fertilizers and pesticides in eco-friendly manners for sustainable agriculture and environments. Along with agricultural applications, medically important fungi play significant role for human health. Fungal communities are useful for sustainable environments as they are used for bioremediation which is the use of microorganisms' metabolism to degrading waste contaminants (sewage, domestic, and industrial effluents) into non-toxic or less toxic materials by natural biological processes. Fungi could be used as mycoremediation for the future of environmental sustainability. Fungi and fungal products have the biochemical and ecological capability to degrade environmental organic chemicals and to decrease the risk associated with metals, semi-metals, and noble metals either by chemical modification or by manipulating chemical bioavailability. The two volumes of "Recent Trends in Mycological Research" aim to provide an understanding of fungal communities from diverse environmental habitats and their potential applications in agriculture, medical, environments and industry. The books are useful to scientists, researchers, and students involved in microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.
This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 2 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.
This book comprises the best potato seed production practices and includes details on potato cultivation, classification, and the main structural elements of the successive stages of potato seed production. It presents potato varieties from Russian originators, describes modern technologies involved in the process of potato seed production, and presents special aspects of phytosanitary and process regulations for the cultivation of high-quality potato seed. Additionally, the authors illustrate the statutory regulation of salable quality of potato seed: purity of variety, diseases, pests, and defects. The authors identify Russian quality control methods and certification of potato seed, and consider the packaging and labeling of potato seed that is held for sale. Finally, the authors also clarify the features of foreign potato seed certification systems.
Microbes are ubiquitous in nature. Among microbes, fungal communities play an important role in agriculture, the environment, and medicine. Vast fungal diversity has been associated with plant systems, namely epiphytic fungi, endophytic fungi, and rhizospheric fungi. These fungi associated with plant systems play an important role in plant growth, crop yield, and soil health. Rhizospheric fungi, present in rhizospheric zones, get their nutrients from root exudates released by plant root systems, which help with their growth, development, and microbe activity. Endophytic fungi typically enter plant hosts through naturally occurring wounds that are the result of plant growth, through root hairs, or at epidermal conjunctions. Phyllospheric fungi may survive or proliferate on leaves depending on material influences in leaf diffuseness or exudates. The diverse nature of these fungal communities is a key component of soil-plant systems, where they are engaged in a network of interactions endophytically, phyllospherically, as well as in the rhizosphere, and thus have emerged as a promising tool for sustainable agriculture. These fungal communities promote plant growth directly and indirectly by using plant growth promoting (PGP) attributes. These PGP fungi can be used as biofertilizers and biocontrol agents in place of chemical fertilizers and pesticides for a more eco-friendly method of promoting sustainable agriculture and environments. This first volume of a two-volume set covers the biodiversity of plant-associated fungal communities and their role in plant growth promotion, the mitigation of abiotic stress, and soil fertility for sustainable agriculture. This book should be useful to those working in the biological sciences, especially for microbiologists, microbial biotechnologists, biochemists, and researchers and scientists of fungal biotechnology.
This book describes how the genome sequence contributes to our understanding of allopolyploidisation and the genome evolution, genetic diversity, complex trait regulation and knowledge-based breeding of this important crop. Numerous examples demonstrate how widespread homoeologous genome rearrangements and exchanges have moulded structural genome diversity following a severe polyploidy bottleneck. The allopolyploid crop species Brassica napus has the most highly duplicated plant genome to be assembled to date, with the largest number of annotated genes. Examples are provided for use of the genome sequence to identify and capture diversity for important agronomic traits, including seed quality and disease resistance. The increased potential for detailed gene discovery using high-density genetic mapping, quantitative genetics and transcriptomic analyses is described in the context of genome availability and illustrated with recent examples. Intimate knowledge of the highly-duplicated gene space, on the one hand, and the repeat landscape on the other, particularly in comparison to the two diploid progenitor genomes, provide a fundamental basis for new insights into the regulatory mechanisms that are coupled with selection for polyploid success and crop evolution.
Arsenic is likely the most talked-about metalloid in the modern world because of its toxic effects on both animal and plants. Further, arsenic pollution is now producing negative impacts on food security, especially in many south Asian countries. Since plants are a major food source, their adaptation to As-rich environments is essential, as is being informed about recent findings on multifarious aspects of the mechanisms of arsenic toxicity and tolerance in plants. Although numerous research works and review articles have been published in journals, annual reviews and as book chapters, to date there has been no comprehensive book on this topic. This book contains 19 informative chapters on arsenic chemistry, plant uptake, toxicity and tolerance mechanisms, as well as approaches to mitigation. Readers will be introduced to the latest findings on plant responses to arsenic toxicity, various tolerance mechanisms, and remediation techniques. As such, the book offers a timely and valuable resource for a broad audience, including plant scientists, soil scientists, environmental scientists, agronomists, botanists and molecular biologists.
Sugarcane enjoys a prominent position among agro-industrial crops and is commercially grown in 115 tropical and subtropical countries around the world. However, fluctuations in sugar prices have forced the sugarcane industry worldwide to broaden its revenue base by moving from single-commodity manufacturing to a range of value-added products. Utilizing the by-products in an innovative manner to create value-added products is the new course of action for sugar-producing countries. For many years sugarcane was regarded as a single-product crop, i.e., only useful for producing sugar. Its actual potential is now increasingly being recognised by the industry and there is a growing trend toward the manufacturing of allied products from sugarcane. Therefore, the focus is now on the establishment of sugar-agro-industry complexes, processing not just sugar but a range of other products. This book provides a comprehensive overview of sugarcane not only as a source of sweetening agents but also for many other uses, including as a source of bio-energy. It also explores the trend of sugar consumption and suggests practices to curb the consumption of sugar products in order to tackle obesity and reduce public health costs. The book underscores the need to diversify sugarcane and highlights means of doing so, while also addressing various innovations and technologies being developed in connection with sugar, sugar derivatives, and sugar industry by-products for sustainable utilization in the sugar-agro industry. Accordingly, it offers a valuable resource for professionals and R&D units in the sugar industry, and for students of agronomy and related fields.
The book reviews key developments in downy mildew research, including the disease, its distribution, symptomatology, host range, yield losses, and disease assessment; the pathogen, its taxonomy, morphology, phylogeny, variability, sporulation, survival and perpetuation, spore germination, infection, pathogenesis, seed infection, disease cycle, epidemiology, forecasting, and fine structures. The book also elaborates the mechanisms of host resistance (biochemical, histological, genetic, and molecular, including cloning and the mapping of R-genes), disease resistance breeding strategies, and the genetics of host-parasite interactions. It explores disease management based on cultural, chemical, biological, host resistance, and integrated approaches; and provides suggestions for future research areas. This book offers a comprehensive guide to an economically important disease, reviewing in detail the extant body of literature. Divided into 16 chapters, each of which includes a wealth of photographs, graphs, histograms, tables, figures, flow charts, micrographs etc., it represents an invaluable source of information for all researchers, teachers, students, industrialists, farmers, policymakers, and all others who are interested in growing healthy and profitable cruciferous crops all over the world.
Computational Methods for Agricultural Research: Advances and Applications brings computing solutions to ancient practices and modern concerns, sowing the seeds for a sustainable, constant food supply. This book treats subjects as old modeling flood patterns and predicting potential climates to distinctly 21st century topics such as pesticide leaching models and the impact of agricultural policy. All of these studies utilize cutting-edge computational techniques of interest to both academics and practitioners in agriculture but also computational modeling researchers, creating a reference practical significance.
Soil erosion is a complex process that depends on soil properties, ground slope, vegetation, and rainfall amount and intensity. Erosion can be significantly reduced through sustainable agricultural practices and sustainable nutrient management techniques that allow farmers to maintain healthy, productive soil for crops without degrading the environment. There is an urgent need to plan and make necessary amendments to restore soil quality. Amelioration Technology for Soil Sustainability is an essential research publication that provides a current and practical exploration of hydrophobic soil amelioration to improve soil sustainability and crop yield within the field of agriculture. Highlighting topics such as ecological systems, impact analysis, and agriculture, this book is ideal for soil scientists, agriculturalists, farmers, environmentalists, managers, policymakers, professionals, researchers, and students.
The book reflects on the issues concerning, on the one hand, the difficulty in feeding an ever- increasing world population and, on the other hand, the need to build new productive systems able to protect the planet from overexploitation. The concept of "food diversity" is a synthesis of diversities: biodiversity of ecological sources of food supply; socio-territorial diversity; and cultural diversity of food traditions. In keeping with this transdisciplinary perspective, the book collects a large number of contributions that examine, firstly the relationships between agrobiodiversity, rural sustainable systems and food diversity; and secondly, the issues concerning typicality (food specialties/food identities), rural development and territorial communities. Lastly, it explores legal questions concerning the regulations aiming to protect both the food diversity and the right to food, in the light of the political, economic and social implications related to the problem of feeding the world population, while at the same time respecting local communities' rights, especially in the developing countries. The book collects the works of legal scholars, agroecologists, historians and sociologists from around the globe.
This book addresses the quantitative measurement of climate change vulnerability at the macro and micro-level and identifies household adaptation strategies to cope with the adverse effects of climate change. Focusing on five different agro-climatic regions of West Bengal: the hill region, foothill region, drought region, and coastal regions of Sunderban and Purba Midnapore, it presents research related to various sectors, including the agricultural, forestry and informal sectors. The book also offers insights into the impact of climate change on smallholdings, forest-dependent communities, fishing and crab collecting communities, casual labourers and workers in the informal sectors, and identifies the key vulnerabilities associated with climate change, as well as the causes of such vulnerability the extent to which remedial measures have been taken. The book particularly highlights the role of Indian governmental policies like Sarva Shiksa Abhiyan, Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA), the housing scheme, Indira Awas Yojana, the Food for Work Programme, and the rural road building scheme, Pradhan Mantri Grameen Sadak Yojana, which are important for rural development and in reducing vulnerability. Showcasing vulnerability measurement in the socio-ecological system, the book will appeal to developmental practitioners, government implementation agencies, policymakers and researchers in the field of environmental science and policymakers will find this book appealing.
This book provides a straightforward and easy-to-understand overview of beneficial plant-bacterial interactions. It features a wealth of unique illustrations to clarify the text, and each chapter includes study questions that highlight the important points, as well as references to key experiments. Since the publication of the first edition of Beneficial Plant-Bacterial Interactions, in 2015, there has been an abundance of new discoveries in this area, and in recent years, scientists around the globe have begun to develop a relatively detailed understanding of many of the mechanisms used by bacteria that facilitate plant growth and development. This knowledge is gradually becoming an integral component of modern agricultural practice, with more and more plant growth-promoting bacterial strains being commercialized and used successfully in countries throughout the world. In addition, as the world's population continues to grow, the pressure for increased food production will intensify, while at the same time, environmental concerns, mean that environmentally friendly methods of food production will need to replace many traditional agricultural practices such as the use of potentially dangerous chemicals. The book, intended for students, explores the fundamentals of this new paradigm in agriculture, horticulture, and environmental cleanup.
This book focuses on the latest genome sequencing of the 25 wild Oryza species, public and private genomic resources, and their impact on genetic improvement research. It also addresses the untapped reservoir of agronomically important traits in wild Oryza species. Rice is a model crop plant that is frequently used to address several basic questions in plant biology, yet its wild relatives offer an untapped source of agronomically important alleles that are absent in the rice gene pool. The genus Oryza is extremely diverse, as indicated by a wide range of chromosome numbers, different ploidy levels and genome sizes. After a 13-year gap from the first sequencing of rice in the 2002, the genomes of 11 wild Oryza species have now been sequenced and more will follow. These vast genomic resources are extremely useful for addressing several basic questions on the origin of the genus, evolutionary relationships between the species, domestication, and environmental adaptation, and also help to substantiate molecular breeding and pre-breeding work to introgress useful characters horizontally from wild species into cultivated rice.
Pigeonpea (Cajanus cajan) is a crop of small land holding farmers in arid and semi-arid regions of the world. It has a number of usages starting from protein rich food to vegetarian families; fuel wood; nitrogen supplier to soil; recycling minerals in soil to animal feed etc. Pigeonpea has been considered to be originated and domesticated in central India from where it travelled to different parts of the world such as Africa and Latin America. In ongoing scenario of climate change, biotic and especially abiotic stresses will make the conditions more challenging for entire agriculture. This volume focusing on the pigeonpea genome will collate the information on the genome sequencing and its utilization in genomics activities, with a focus on the current findings, advanced tools and strategies deployed in pigeonpea genome sequencing and analysis, and how this information is leading to direct outcomes for plant breeders and subsequently to farmers.
This book employs different parametric and non-parametric panel data models which have been used in history of developed panel data efficiency measurement literature. It assesses the differences of models based on characteristics and efficiency scores measurement using a systematic sensitivity analysis of the results. On the whole twelve parametric and four nonparametric models were studied. Parametric models are classified in four groups in terms of the assumptions made on the temporal behavior of inefficiency. A common issue among all the parametric models is that inefficiency is individual producer-specific. This is consistent with the notion of measuring the efficiency of decision-making units. Non-parametric models are divided into partial and full frontier models. A main contribution of this volume is that it helps to understand differences between parametric and non-parametric models. On empirical part of the volume, technical efficiency of two agricultural strategic crops (cotton and sugar beet) in different provinces of the Iran are analyzed. Using different models, the most efficient and inefficient provinces in cotton and sugar beet production of Iran are recognized.
This book profiles various cases that are emerging in addressing global challenges in the context of SDGs for society in the era of climate change and covers case studies of projects being undertaken to tackle biodiversity, food security, climate change, energy and water security. The book is written by 37 authors, and will appeal to various stakeholders including academics working within the identified thematic areas, policy planners, development agencies, governments and United Nations agencies. The adoption of the Sustainable Development Goals (SDGs) in 2015 ushered a new era in the global development agenda as the world transitioned from the Millennium Development Goals (MDGs). The new era of SDGs that are all-inclusive, unlike the MDGs with the focus now being on ensuring human success that is predicated on environmental protection. The year 2020 marked five years post the adoption of the SDGs with increased calls for stock-taking of progress made amid strong calls for a decade of action to accelerate the delivery of the SDGs by 2030. These calls have been louder now given the impact of the COVID-19 pandemic, which reset the global economy and increased intensity of extreme weather events across the world. Since climate change has emerged as one of the biggest threats to the achievement of the SDGs, there has been growing concerns on its impact on biodiversity loss and the extinction of some species. There are also concerns regarding increased food insecurity at the household level in some parts of the world, particularly in Asia and Africa. With the demand for climate change action on the increase, there have also been growing calls for the big carbon emitters to drastically cut their emissions and invest in clean energy to save the planet by following development pathways making emissions stay under the 1.5 DegreesC increase in temperature.
As part of its efforts to improve fertilizer use and efficiency in West Africa, and following the recent adoption of the West African fertilizer recommendation action plan (RAP) by ECOWAS, this volume focuses on IFDC's technical lead with key partner institutions and experts to build on previous and current fertilizer recommendations for various crops and countries in West Africa for wider uptake by public policy makers and fertilizer industry actors. |
![]() ![]() You may like...
Application of Artificial Intelligence…
Jose Ramon Saura, Felipe Debasa
Hardcover
R8,378
Discovery Miles 83 780
Spying And The Crown - The Secret…
Richard J. Aldrich, Rory Cormac
Paperback
R380
Discovery Miles 3 800
Leveraging Biomedical and Healthcare…
Firas Kobeissy, Kevin Wang, …
Paperback
|