Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Agriculture & farming > Agricultural science
Plants require essential nutrients (macronutrients and micronutrients) for normal functioning. Sufficiency range is the levels of nutrients necessary to meet the plant's needs for optimal growth. This range depends on individual plant species and the particular nutrient. Nutrient levels outside of a plant's sufficiency range cause overall crop growth and health to decline, due either to deficiency or toxicity from over-accumulation. Apart from micronutrients (B, Cl, Mn, Fe, Zn, Cu and Mo), Aluminum (Al), cerium (Ce), cobalt (Co), iodine (I), lanthanum (La), sodium (Na), selenium (Se), silicon (Si), titanium (Ti), and vanadium (V) are emerging as novel biostimulants that may enhance crop productivity and nutritional quality. These beneficial elements are not "essential" but when supplied at low dosages, they augment plant growth, development, and yield by stimulating specific molecular, biochemical, and physiological pathways in responses to challenging environments. The book is the first reference volume that approaches plant micronutrient management with the latest biotechnological and omics tools. Expertly curated chapters highlight working solutions as well as open problems and future challenges in plant micronutrient deficiency or toxicity. We believe this book will introduce readers to state-of-the-art developments and research trends in this field.
This book examines comprehensively for the first time, the scope and accuracy of indigenous environmental knowledge. It shows that in some spheres, including agriculture, house design, fuel and water manipulation, the high reputation of local observers is well deserved and often sufficiently insightful to warrant wider imitation. However it also reveals that in certain matters, notably some aspects of health care and wild-species population management, local knowledge systems are conspicuously unsound. Not all the difficulties are of the communities own making, some stem from external factors outside their control. However in either case, remedial measures can be suggested and this book describes, especially for the benefit of practitioners, what steps might be taken in rural communities to improve the quality of life. The possibility of useful transfers of information from local settings to Western ones is not ignored and forms the subject of the book's final chapter.
This book focusing on the bitter gourd genome is the first comprehensive compilation of knowledge on the botany, cytogenetical analysis, genetic resources and diversity, traditional breeding, tissue culture and genetic transformation, whole genome sequencing and comparative genomics in the Cucurbitaceae family. It discusses the biochemical profile of the bioactives present in this horticultural crop, used both as a vegetable and as a medicine, and also addresses sex determination in bitter gourd. Written by respected international experts, the book is useful to students, teachers and scientists in academia, as well as seed companies and pharmaceutical industries.
Exploring the competitiveness and profitability of the agricultural sector in Central Europe, this book argues that the successful management of agricultural enterprises is inconceivable without the knowledge and application of modern forms of management and technology. Organised in an analytical framework and offering comprehensive empirical data, this book focusses on the countries of Poland, the Czech Republic, and Hungary. The contributors identify good practices, unresolved problems, and factors influencing profitability. Topics explored include the challenges of increasing sales potential, competitiveness, partnerships and cooperation, human resources issues, and risk management. By constituting a valuable source of knowledge, Managing Agricultural Enterprises is important to those researching the agricultural industry and management, but also to policy-makers and managers of agricultural enterprises.
Fruits of the Brazilian Cerrado: Composition and Functional Benefits describes the nutritional, chemical and physical characteristics of the fruits of the Cerrado, as well as their pharmacological effects and use in phytotherapics. Chapters are dedicated to the morphological characteristics, macronutrients, micronutrients and active compounds of various fruits, with separate sections covering their peels, leaves, nuts, pulps, and other components. The text also includes detailed studies on the treatment of diseases with these natural products, as well as their applications in popular use by local communities. Authors explain the importance of bioactive compounds found in the fruits and their possible mechanisms of action in the organism. This text thus provides a valuable reference to researchers studying a range of topics, including functional foods, phytotherapy, and plant science.
Plant tissue culture (PTC) technology has gained unassailable success for its various commercial and research applications in plant sciences. Plant growth regulators (PGRs) are an essential part of any plant tissue culture intervention for propagation or modification of plants. A wide range of PGRs are available, including aromatic compounds that show cytokinin activities, promote cell division and micro-propagation, viz. kinetin, N6-benzyladenine and topolins. Topolins are naturally occurring aromatic compounds that have gained popularity as an effective alternative for other frequently used cytokinins in in vitro culture of plants. Among them, meta-topolin [6-(3-hydroxybenzlyamino) purine] is the most popular and its use in plant tissue culture has amplified swiftly. During the last few decades, there have been numerous reports highlighting the effectiveness of meta-topolin in micropropagation and alleviation of various physiological disorders, rooting and acclimatization of tissue culture raised plants.
This book presents a compilation of case studies from different countries on achieving agricultural sustainability. The book stresses that, in order to meet the needs of our rapidly growing population, it is imperative to increase agricultural productivity. If global food production is to keep pace with an increasing population, while formulating new food production strategies for developing countries, the great challenge for modern societies is to boost agricultural productivity. Today, the application of chemicals to enhance plant growth or induced resistance in plants is limited due to the negative effects of chemical treatment and the difficulty of determining the optimal concentrations to benefit the plant. In the search for alternative means to solve these problems, biological applications have been extensively studied. Naturally occurring plant-microbe-environment interactions are utilized in many ways to enhance plant productivity. As such, a greater understanding of how plants and microbes coexist and benefit one another can yield new strategies to improve plant productivity in the most sustainable way. Developing sustainable agricultural practices requires understanding both the basic and applied aspects of agriculturally important microorganisms, with a focus on transforming agricultural systems from being nutrient-deficient to nutrient-rich. This work is divided into two volumes, the aim being to provide a comprehensive description and to highlight a holistic approach, respectively. Taken together, the two volumes address the fundamentals, applications, research trends and new prospects of agricultural sustainability. Volume one consists of two sections, with the first addressing the role of microbes in sustainability, and the second exploring beneficial soil microbe interaction in several economically important crops. Section I elucidates various mechanisms and beneficial natural processes that enhance soil fertility and create rhizospheric conditions favourable for high fertility and sustainable soil flora. It examines the mechanism of action and importance of rhizobacteria and mycorrhizal associations in soil. In turn, section II presents selected case studies involving economically important crops. This section explains how agriculturally beneficial microbes have been utilized in sustainable cultivation with high productivity. Sustainable food production without degrading the soil and environmental quality is a major priority throughout the world, making this book a timely addition. It offers a comprehensive collection of information that will benefit students and researchers working in the field of rhizospheric mechanisms, agricultural microbiology, biotechnology, agronomy and sustainable agriculture, as well as policymakers in the area of food security and sustainable agriculture.
This 4-volume set focuses on the use of microbial bioremediation and phytoremediation to clean up pollutants in soil, such as pesticides, petroleum hydrocarbons, metals, and chlorinated solvents, which reduce the soil's fertility and renders it unfit for plant growth. The volumes cover the many diverse eco-friendly microbial bioremediation and phytoremediation techniques for sustainable soil management. Bioremediation and Phytoremediation Technologies in Sustainable Soil Management: Volume 1: Fundamental Aspects and Contaminated Sites begins with an overview of phytoremediation and phytotechnologies and the role of environmental factors. It goes on to introduce soil assessment techniques and offers methods of remediation designed to combat soil and agricultural degradation. Attention is given to specific types of sites and soil pollution, such as soils contaminated by heavy metals; microbial and phytoremediation-based removal of polycyclic aromatic hydrocarbons (PAHs) from coal, crude oil, and gasoline; microbial bioremediation and amelioration of pesticide-contaminated soils; phytoremediation techniques for biomedical waste contaminated sites; as well as biomediation processes for human waste sites. Biopesticides are also explained in the book as an alternative to conventional pesticides as well as the possibilities for the improvement of modern bio-pesticides. Volume 2: Microbial Approaches and Recent Trends focuses on new and emerging techniques and approaches to address soil pollution. These include the use of rhizobacteria, archae, cyanobacteria, and microalgae as biofertilizers and for soil bioremediation efforts. New technologies for assessment of soil bioremediation are explored also. The chapters provides in-depth coverage of the mechanisms, advantages, and disadvantages of the technologies used and highlights the use of different microbial enzymes that are used in the process of bioremediation and phytoremediation to clean up different pollutants without causing damage to the natural environment. Volume 3: Inventive Techniques, Research Methods, and Case Studies is organized in three themes: plants in green remediation, tools and techniques in bioremediation and phytoremediation, and special sites and their remediation techniques. Innovative new techniques that advance the use of molecular biological approaches, nanotechnology, immobilization, vermicomposting and genetic modification developments are investigated to take advantage of these possibilities. Volume 4: Degradation of Pesticides and Polychlorinated Biphenyls addresses pesticide degradation, PCBs degradation, and genetic interventions. It begins by describing environment pesticide degradation, mechanisms and sustainability, microbes and microbial enzymes, plant microbe interactions, organophosphorus degradations and endosulfan degradation. It then goes on to discuss PCBs and degradation, cypermethrin, degradation by Phanerochaete chrysosporium, carvone and surfactants for degradation of PCBs. The book also advocates for genetic systems for degradation of PCBs and pesticides, with discussion of the different advantages and disadvantages for each strategy and the various techniques. Together, these four volumes provide in-depth coverage of the mechanisms, advantages, and disadvantages of the bioremediation and phytoremediation technologies for safe and sustainable soil management. The diverse topics help to arm biologists, agricultural engineers, environmental and soil scientists and chemists with the information and tools they need to address soil toxins that are a dangerous risk to plants, wildlife, humans and, of course, the soil itself.
This book is devoted to Agroecological Crop Protection, which is the declension of the principles of agroecology to crop protection. It presents the concepts of this innovative approach, case studies and lessons and generic keys for agroecological transition. The book is intended for a wide audience, including scientists, experimenters, teachers, farmers, students. It represents a new tool, proposing concrete keys of action on the basis of feedbacks validated scientifically. Beyond the examples presented, it is therefore of general scope and proposes recommendations for all temperate and tropical cropping systems. It contributes to the training and teaching modules in this field and it is an updated information support for professionals and a teaching aid for students (agronomy, crop protection, biodiversity management, agroecology).
The book is a practical manual which has been created to support the syllabus of agro-meteorology courses specifically designed for graduate and post-graduate students. The topics covered in the manual include working with meteorological instruments for measurement of various meteorological parameters like temperature, humidity, sunshine hours, precipitation, etc. Separate chapters have been included for computation of growing degree days, agro-climatic zones, crop modelling and agro-advisory services. The book will have great appeal to students of agriculture, horticulture, and forestry.
This book covers advanced concepts and creative ideas with regard to insect biorational control and insecticide resistance management. Some chapters present and summarize general strategies or tactics for managing insect pests such as the principles of IPM in various crop systems and biorational control of insect pests, advances in organic farming, alternative strategies for controlling orchard and field-crop pests. Other chapters cover alternative methods for controlling pests such as disruption of insect reproductive systems and utilization of semiochemicals and diatomaceous earth formulations, and developing bioacoustic methods for mating disruption. Another part is devoted to insecticide resistance: mechanisms and novel approaches for managing insect resistance in agriculture and in public health.
This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 1 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.
Sorghum is the most important cereal crop grown in the semi-arid tropics (SAT) of Africa, Asia, Australia and Americas for food, feed, fodder and fuel. It is the fifth most important cereal crop globally after rice, wheat, maize and barley, and plays a major role in global food security. Sorghum is consumed in different forms for various end-uses. Its grain is mostly used directly for food purposes. After the release of the proceedings of two international symposia in the form of books "Sorghum in Seventies" and "Sorghum in Eighties", global sorghum research and development have not been documented at one place. Of course, few books on sorghum have been released that focus on specific issues/research areas, but comprehensive review of all aspects of recent development in different areas of sorghum science has not been compiled in the form a single book. This book is intended to fill in a void to bridge the gap by documenting all aspects of recent research and development in sorghum encompassing all the progress made, milestones achieved across globe in genetic diversity assessment, crop improvement and production, strategies for high yield, biotic and abiotic stress resistance, grain and stover quality aspects, storage, nutrition, health and industrial applications, biotechnological applications to increase production, including regional and global policy perspectives and developmental needs. This book will be an institutional effort to compile all the latest information generated in research and development in sorghum across the globe at one place.
Proteomics, like other post-genomics tools, has been growing at a rapid pace and has important applications in numerous fields of science. While its use in animal and veterinary sciences is still limited, there have been considerable advances in this field in recent years, in areas as diverse as physiology, nutrition and food of animal origin processing. This is mainly as a consequence of a wider availability and better understanding of proteomics methodologies by animal and veterinary researchers. This book provides a comprehensive, state-of-the-art account of the status of farm-animal proteomics research, focusing on the principles behind proteomics methodologies and its specific applications and offering clear example.
This is the first book to focus on farm and rural community management in less favored areas of Japan. It provides an economic framework for, and empirical findings on, rural community management in terms of the distribution of rural resources, efficiency of farmland conservation, community development through agribusinesses, and utilization of human resources for the sustainability of rural society. The topics addressed include organic farming, the added value of locally processed foods, broad-based community agreement under a direct payment policy, forms of community vitalization, new farmers, farm diversification, redistribution of local resources among farmers by establishing farm organizations, community business, community hubs formed by multiple communities, and stakeholders who have migrated from urban to rural areas.The book is divided into four parts. Part I examines the relationship between regional agriculture and the conservation of farmland, including in hilly and mountainous areas. Part II deals with the improvement of farm resource management, particularly the redistribution of agricultural resources within multiple communities. In turn, Part III focuses on agribusinesses, especially the production of locally processed foods and community business. Lastly, Part IV addresses the sustainability of rural society, and discusses rural community development through community hubs, community-based rural tourism, and immigrated stakeholders. In each part, the peculiarities and commonalities of rural communities are explored by comparing the results of these studies with domestic and international studies.This book is highly recommended to readers who are concerned with the development of agriculture and community, resource conservation in less favored areas, and the theoretical and empirical aspects of agricultural and resource economics, as well as to those who wish to better understand rural communities in Japan.
This book analyses the mass production and application of biological control products for biotic and abiotic factors affecting agricultural production. It also describes how to develop sustainable agriculture under Egyptian conditions. The book is divided into four parts covering: 1) mass production of parasitoids, insects and mite predators, 2) mass production of the microbial control agents for managing insect pests, 3) biocontrol products for plant diseases, and 4) bioproducts against abiotic factors. It discusses various methods of controlling insect pests and plant diseases in order to increase agricultural production, improve the quality of field crops and reduce the food gap by applying a range of technologies. This book helps increase our understanding and awareness of how to produce healthy products for local consumption and utilization as well as for exports.
Begomoviruses are one of the most interesting plant viruses to study for basic and applied research as they cause huge economic losses to agriculture industries and farmers all over the world. They belong to family Geminiviridae and are emergent plant viral pathogens which cause diseases in various crops in the tropical and subtropical regions. They are transmitted by the whitefly (B. tabaci) and have either one (monopartite DNA-A) or two (bipartite DNA-A and DNA-B) genomic components. DNA-A and DNA-B are of ~2600 - 2800 nucleotides each. A number of serious diseases of cultivated crops of the Fabaceae, Malvaceae, Solanaceae and Cucurbitaceae families are caused by Begomoviruses which are considered as threat to their cultivation in many countries. Accurate diagnosis is important for successful diseases management, since plants infected by Begomovirus do not recover, suffer serious yield losses and act as further sources of inoculum, which is then picked up and spread by their vector whitefly (B. tabaci). Reports of occurrence of new viruses and re-emergence of several known viruses in new niches have become regular event. In such a dynamic system, growth of several crop species relies on an accurate diagnosis, management and better understanding of the biology of the casual virus. This is crucial to evolve appropriate control practices and to prevent the virus infection. Researchers have achieved considerable progress in characterization, detection and management of virus on different crop species in the last decade. This book covers latest information in diagnosis of begomoviruses in the present scenario and explores the new vistas in the field of genomics and proteomics. Chapters in Section 1 illustrates the occurrence, genome organisation, transmission and diagnostics of begomoviruses. It also details the diseases caused by begomoviruses on different crops, detection techniques and management strategies in support of research findings by presentation of data, graphics, figures and tables. Section 2 is a chapterwise collection of occurrence, diversity and status of begomoviruses in Asian Africa counties where the diseases are most prevalent. This book will provide wide opportunity to the readers to have complete information and status of begomovirus in Asia and Africa. This will be useful resource for researchers and extension workers involved in the begomvirus disease diagnosis and molecular biology. Expert detection, accurate diagnosis and timely management play a significant role in keeping plants free from pathogens. In this book expert researchers share their research knowledge and literature which are vital towards the diagnosis of begomoviruses, addressing traditional plant pathology techniques as well as advanced molecular diagnostic approach. The book deals with the economically important crops including fruits, vegetables along with challenges in crop protection against diseases caused by begomovirus. This will be resourceful and handy for researcher, practitioners and also students.
This book presents a broad perspective on saponins as important natural products with a key role in plant defense. The presence of saponins has been reported in several plant species, and many types of saponins have been found to exhibit significant antifungal activities. In addition to their role in plant defense, saponins are of increasing interest for drug research, as they are active ingredients in several traditional medicines and hold potentially valuable pharmacological properties. In this book, the authors briefly introduce readers to saponin accumulation in various plant organs, with a specific focus on their structure classification and diversity. Readers will find detailed information on the saponin structure-activity relationship and saponins' vital role in sustainable agriculture as a chemical barrier to pathogen attack. The latest techniques for isolating, identifying, and quantifying saponins are also discussed. In the closing chapter, the authors outline the recent metabolic engineering strategies applied to improve saponin glycosides production and their potential applications in plant disease resistance. This book and the companion volume Bioactive Molecules in Plant Defense: Signaling in Growth and Stress offer vital resources for all researchers and students interested in plant pathology, mycology and sustainable agriculture.
Glutathione ( -glutamyl-cysteinyl-glycine) is a ubiquitously distributed sulfurcontaining antioxidant molecule that plays key roles in the regulation of plant growth, development, and abiotic and biotic stress tolerance. It is one of the most powerful low-molecular-weight thiols, which rapidly accumulates in plant cells under stress. Recent in-depth studies on glutathione homeostasis (biosynthesis, degradation, compartmentalization, transport, and redox turnover) and the roles of glutathione in cell proliferation and environmental stress tolerance have provided new insights for plant biologists to conduct research aimed at deciphering the mechanisms associated with glutathione-mediated plant growth and stress responses, as well as to develop stress-tolerant crop plants. Glutathione has also been suggested to be a potential regulator of epigenetic modifications, playing important roles in the regulation of genes involved in the responses of plants to changing environments. The dynamic relationship between reduced glutathione (GSH) and reactive oxygen species (ROS) has been well documented, and glutathione has been shown to participate in several cell signaling and metabolic processes, involving the synthesis of protein, the transport of amino acids, DNA repair, the control of cell division, and programmed cell death. Two genes, gamma-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2), are involved in GSH synthesis, and genetic manipulation of these genes can modulate cellular glutathione levels. Any fluctuations in cellular GSH and oxidized glutathione (GSSG) levels have profound effects on plant growth and development, as glutathione is associated with the regulation of the cell cycle, redox signaling, enzymatic activities, defense gene expression, systemic acquired resistance, xenobiotic detoxification, and biological nitrogen fixation. Being a major constituent of the glyoxalase system and ascorbate-glutathione cycle, GSH helps to control multiple abiotic and biotic stress signaling pathways through the regulation of ROS and methylglyoxal (MG) levels. In addition, glutathione metabolism has the potential to be genetically or biochemically manipulated to develop stress-tolerant and nutritionally improved crop plants. Although significant progress has been made in investigating the multiple roles of glutathione in abiotic and biotic stress tolerance, many aspects of glutathione-mediated stress responses require additional research. The main objective of this volume is to explore the diverse roles of glutathione in plants by providing basic, comprehensive, and in-depth molecular information for advanced students, scholars, teachers, and scientists interested in or already engaged in research that involves glutathione. Finally, this book will be a valuable resource for future glutathione-related research and can be considered as a textbook for graduate students and as a reference book for frontline researchers working on glutathione metabolism in relation to plant growth, development, stress responses, and stress tolerance.
This book includes papers presented at the 2017 Joint meeting of Fodder Crops and Amenity Grasses Section and Protein Crops Working Group of EUCARPIA-Oil and Protein Crops Section. The theme of the meeting "Breeding Grasses and Protein Crops in the Era of Genomics" has been divided into six parts: (1) Utilisation of genetic resources and pre-breeding, (2) Genetic improvement of quality and agronomic traits, (3) Breeding for enhanced stress tolerance (4) Implementation of phenomics and biometrics, (5) Development of genomic tools and bioinformatics and (6) Reports of Parallel Sessions.
This book provides an indispensable reference guide to the sustainable control and treatment of biomass residues from a wide variety of agroindustrial sources, e.g. sugarcane, livestock, pulp & paper, food wastes, among others. Pursuing a structured and clear approach, the book opens with a general introduction to biomass, sustainability and environmental chemistry aspects, and on how the use of biomass as a renewable material ties into the UN's Sustainable Development Goals. The book subsequently presents analytical methods applied to different biomass types and their residues and reviews monitoring and treatment strategies in order to avoid pollution of the same. The book closes by describing the value chains, bioeconomy and circular economy for globally relevant agroindustrial biomass. The book is intended for researchers in academia and industry alike and shows how, in addition to sustainability criteria and life cycle assessments, integrating environmental chemistry aspects can contribute to a holistic approach, and unlock the economic potential of biomass in the age of circular economy and sustainable development. |
You may like...
Nature and Properties of Soils, The…
Raymond Weil, Nyle Brady
Paperback
R2,284
Discovery Miles 22 840
|