![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > Algebraic topology
Compactness in topology and finite generation in algebra are nice properties to start with. However, the study of compact spaces leads naturally to non-compact spaces and infinitely generated chain complexes; a classical example is the theory of covering spaces. In handling non-compact spaces we must take into account the infinity behaviour of such spaces. This necessitates modifying the usual topological and algebraic cate gories to obtain "proper" categories in which objects are equipped with a "topologized infinity" and in which morphisms are compatible with the topology at infinity. The origins of proper (topological) category theory go back to 1923, when Kere kjart6 [VT] established the classification of non-compact surfaces by adding to orien tability and genus a new invariant, consisting of a set of "ideal points" at infinity. Later, Freudenthal [ETR] gave a rigorous treatment of the topology of "ideal points" by introducing the space of "ends" of a non-compact space. In spite of its early ap pearance, proper category theory was not recognized as a distinct area of topology until the late 1960's with the work of Siebenmann [OFB], [IS], [DES] on non-compact manifolds.
These notes are an expanded and updated version of a course of lectures which I gave at King's College London during the summer term 1979. The main topic is the Hermitian classgroup of orders, and in particular of group rings. Most of this work is published here for the first time. The primary motivation came from the connection with the Galois module structure of rings of algebraic integers. The principal aim was to lay the theoretical basis for attacking what may be called the "converse problem" of Galois module structure theory: to express the symplectic local and global root numbers and conductors as algebraic invariants. A previous edition of these notes was circulated privately among a few collaborators. Based on this, and following a partial solution of the problem by the author, Ph. Cassou-Nogues and M. Taylor succeeded in obtaining a complete solution. In a different direction J. Ritter published a paper, answering certain character theoretic questions raised in the earlier version. I myself disapprove of "secret circulation," but the pressure of other work led to a delay in publication; I hope this volume will make amends. One advantage of the delay is that the relevant recent work can be included. In a sense this is a companion volume to my recent Springer-Ergebnisse-Bericht, where the Hermitian theory was not dealt with. Our approach is via "Hom-groups," analogous to that followed in recent work on locally free classgroups.
This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do we recognize an integrable system? His own contribution then develops connections with algebraic geometry, and includes an introduction to Riemann surfaces, sheaves, and line bundles. Graeme Segal takes the Kortewegde Vries and nonlinear Schroedinger equations as central examples, and explores the mathematical structures underlying the inverse scattering transform. He explains the roles of loop groups, the Grassmannian, and algebraic curves. In the final part of the book, Richard Ward explores the connection between integrability and the self-dual Yang-Mills equations, and describes the correspondence between solutions to integrable equations and holomorphic vector bundles over twistor space.
This volume contains research papers and survey articles written by Beno Eckmann from 1941 to 1986. The aim of the compilation is to provide a general view of the breadth of Eckmann s mathematical work. His influence was particularly strong in the development of many subfields of topology and algebra, where he repeatedly pointed out close, and often surprising, connections between them and other areas. The surveys are exemplary in terms of how they make difficult mathematical ideas easily comprehensible and accessible even to non-specialists. The topics treated here can be classified into the following, not entirely unrelated areas: algebraic topology (homotopy and homology theory), algebra, group theory and differential geometry. Beno Eckmann was Professor of Mathematics at the University of Lausanne, 1942-48, and Principal of the Institute for Mathematical Research at the ETH Zurich, 1964-84, where he was therefore an emeritus professor."
This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of this symposium was the development of new perspectives and new constructions with a categorical flavor. As the lectures at the symposium and the papers of this volume demonstrate, these perspectives and constructions have enabled a broadening of vistas, a synergy between once-differentiated subjects, and solutions to mathematical problems both old and new.
In the study of algebraic/analytic varieties a key aspect is the description of the invariants of their singularities. This book targets the challenging non-isolated case. Let f be a complex analytic hypersurface germ in three variables whose zero set has a 1-dimensional singular locus. We develop an explicit procedure and algorithm that describe the boundary M of the Milnor fiber of f as an oriented plumbed 3-manifold. This method also provides the characteristic polynomial of the algebraic monodromy. We then determine the multiplicity system of the open book decomposition of M cut out by the argument of g for any complex analytic germ g such that the pair (f,g) is an ICIS. Moreover, the horizontal and vertical monodromies of the transversal type singularities associated with the singular locus of f and of the ICIS (f,g) are also described. The theory is supported by a substantial amount of examples, including homogeneous and composed singularities and suspensions. The properties peculiar to M are also emphasized.
Over the past fifteen years, the geometrical and topological methods of the theory of manifolds have as- sumed a central role in the most advanced areas of pure and applied mathematics as well as theoretical physics. The three volumes of Modern Geometry - Methods and Applications contain a concrete exposition of these methods together with their main applications in mathematics and physics. This third volume, presented in highly accessible languages, concentrates in homology theory. It contains introductions to the contemporary methods for the calculation of homology groups and the classification of manifesto. Both scientists and students of mathematics as well as theoretical physics will find this book to be a valuable reference and text.
Since its very existence as a separate field within computer science, computer graphics had to make extensive use of non-trivial mathematics, for example, projective geometry, solid modelling, and approximation theory. This interplay of mathematics and computer science is exciting, but also makes it difficult for students and researchers to assimilate or maintain a view of the necessary mathematics. The possibilities offered by an interdisciplinary approach are still not fully utilized. This book gives a selection of contributions to a workshop held near Genoa, Italy, in October 1991, where a group of mathematicians and computer scientists gathered to explore ways of extending the cooperation between mathematics and computer graphics.
Global analysis has as its primary focus the interplay between the local analysis and the global geometry and topology of a manifold. This is seen classicallv in the Gauss-Bonnet theorem and its generalizations. which culminate in the Ativah-Singer Index Theorem [ASI] which places constraints on the solutions of elliptic systems of partial differential equations in terms of the Fredholm index of the associated elliptic operator and characteristic differential forms which are related to global topologie al properties of the manifold. The Ativah-Singer Index Theorem has been generalized in several directions. notably by Atiyah-Singer to an index theorem for families [AS4]. The typical setting here is given by a family of elliptic operators (Pb) on the total space of a fibre bundle P = F_M_B. where is defined the Hilbert space on Pb 2 L 1p -llbl.dvollFll. In this case there is an abstract index class indlPI E ROIBI. Once the problem is properly formulated it turns out that no further deep analvtic information is needed in order to identify the class. These theorems and their equivariant counterparts have been enormously useful in topology. geometry. physics. and in representation theory.
This book contains two contributions: "Combinatorial and Asymptotic Methods in Algebra" by V.A. Ufnarovskij is a survey of various combinatorial methods in infinite-dimensional algebras, widely interpreted to contain homological algebra and vigorously developing computer algebra, and narrowly interpreted as the study of algebraic objects defined by generators and their relations. The author shows how objects like words, graphs and automata provide valuable information in asymptotic studies. The main methods emply the notions of Grobner bases, generating functions, growth and those of homological algebra. Treated are also problems of relationships between different series, such as Hilbert, Poincare and Poincare-Betti series. Hyperbolic and quantum groups are also discussed. The reader does not need much of background material for he can find definitions and simple properties of the defined notions introduced along the way. "Non-Associative Structures" by E.N.Kuz'min and I.P.Shestakov surveys the modern state of the theory of non-associative structures that are nearly associative. Jordan, alternative, Malcev, and quasigroup algebras are discussed as well as applications of these structures in various areas of mathematics and primarily their relationship with the associative algebras. Quasigroups and loops are treated too. The survey is self-contained and complete with references to proofs in the literature. The book will be of great interest to graduate students and researchers in mathematics, computer science and theoretical physics."
In 1989-90 the Mathematical Sciences Research Institute conducted a program on "Algebraic Topology and its " "Applications." The main areas of concentration were homotopy theory, K-theory, and applications to geometric topology, gauge theory, and moduli spaces. Workshops were conducted in these three areas. This volume consists of invited, expository articles on the topics studied during this program. They describe recent advances and point to possible new directions. They should prove to be useful references for researchers in Algebraic Topology and related fields, as well as to graduate students.
In the Fall of 1975 we started a joint project with the ultimate goal of topo logically classifying real algebraic sets. This has been a long happy collaboration (c.f., [K2)). In 1985 while visiting M.S.R.1. we organized and presented our classification results up to that point in the M.S.R.1. preprint series [AK14] -[AK17]. Since these results are interdependent and require some prerequisites as well as familiarity with real algebraic geometry, we decided to make them self contained by presenting them as a part of a book in real algebraic geometry. Even though we have not arrived to our final goal yet we feel that it is time to introduce them in a self contained coherent version and demonstrate their use by giving some applications. Chapter I gives the overview of the classification program. Chapter II has all the necessary background for the rest of the book, which therefore can be used as a course in real algebraic geometry. It starts with the elementary properties of real algebraic sets and ends with the recent solution of the Nash Conjecture. Chapter III and Chapter IV develop the theory of resolution towers. Resolution towers are basic topologically defined objects generalizing the notion of manifold.
Topology is a relatively young and very important branch of mathematics. It studies properties of objects that are preserved by deformations, twistings, and stretchings, but not tearing. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. There is hardly an area of mathematics that does not make use of topological results and concepts. The importance of topological methods for different areas of physics is also beyond doubt. They are used in field theory and general relativity, in the physics of low temperatures, and in modern quantum theory. The book is well suited not only as preparation for students who plan to take a course in algebraic topology but also for advanced undergraduates or beginning graduates interested in finding out what topology is all about. The book has more than 200 problems, many examples, and over 200 illustrations.
This is the first monograph to exclusively treat Kac-Moody (K-M) groups, a standard tool in mathematics and mathematical physics. K-M Lie algebras were introduced in the mid-sixties independently by V. Kac and R. Moody, generalizing finite-dimensional semisimple Lie algebras. K-M theory has since undergone tremendous developments in various directions and has profound connections with a number of diverse areas, including number theory, combinatorics, topology, singularities, quantum groups, completely integrable systems, and mathematical physics. This comprehensive, well-written text moves from K-M Lie algebras to the broader K-M Lie group setting, and focuses on the study of K-M groups and their flag varieties. In developing K-M theory from scratch, the author systematically leads readers to the forefront of the subject, treating the algebro-geometric, topological, and representation-theoretic aspects of the theory. Most of the material presented here is not available anywhere in the book literature.{\it Kac--Moody Groups, their Flag Varieties and Representation Theory} is suitable for an advanced graduate course in representation theory, and contains a number of examples, exercises, challenging open problems, comprehensive bibliography, and index. Research mathematicians at the crossroads of representation theory, geometry, and topology will learn a great deal from this text; although the book is devoted to the general K-M case, those primarily interested in the finite-dimensional case will also benefit. No prior knowledge of K-M Lie algebras or of (finite-dimensional) algebraic groups is required, but some basic knowledge would certainly be helpful. For the reader's convenience some of the basic results needed from other areas, including ind-varieties, pro-algebraic groups and pro-Lie algebras, Tits systems, local cohomology, equivariant cohomology, and homological algebra are included.
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.
The KK-theory of Kasparov is now approximately twelve years old; its power, utility and importance have been amply demonstrated. Nonethe less, it remains a forbiddingly difficult topic with which to work and learn. There are many reasons for this. For one thing, KK-theory spans several traditionally disparate mathematical regimes. For another, the literature is scattered and difficult to penetrate. Many of the major papers require the reader to supply the details of the arguments based on only a rough outline of proofs. Finally, the subject itself has come to consist of a number of difficult segments, each of which demands prolonged and intensive study. is to deal with some of these difficul Our goal in writing this book ties and make it possible for the reader to "get started" with the theory. We have not attempted to produce a comprehensive treatise on all aspects of KK-theory; the subject seems too vital to submit to such a treatment at this point. What seemed more important to us was a timely presen tation of the very basic elements of the theory, the functoriality of the KK-groups, and the Kasparov product."
DYNAMICS REPORTED reports on recent developments in dynamical systems. Dynamical systems of course originated from ordinary differential equations. Today, dynamical systems cover a much larger area, including dynamical processes described by functional and integral equations, by partial and stochastic differential equations, etc. Dynamical systems have involved remarkably in recent years. A wealth of new phenomena, new ideas and new techniques are proving to be of considerable interest to scientists in rather different fields. It is not surprising that thousands of publications on the theory itself and on its various applications are appearing DYNAMICS REPORTED presents carefully written articles on major subjects in dynamical systems and their applications, addressed not only to specialists but also to a broader range of readers including graduate students. Topics are advanced, while detailed exposition of ideas, restriction to typical results - rather than the most general one- and, last but not least, lucid proofs help to gain the utmost degree of clarity. It is hoped, that DYNAMICS REPORTED will be useful for those entering the field and will stimulate an exchange of ideas among those working in dynamical systems Summer 1991 Christopher K. R. T Jones Drs Kirchgraber Hans-Otto Walther Managing Editors Table of Contents Limit Relative Category and Critical Point Theory G. Fournier, D. Lupo, M. Ramos, M. Willem 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Relative Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Relative Cupiength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4. Limit Relative Category . . . . . . . . . . . . . . . . . . . . . . . '" . . . . " . . . . . . . . . . . . . . . . 10 5. The Deformation Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6. Critical Point Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7. Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Students of topology rightly complain that much of the basic material in the subject cannot easily be found in the literature, at least not in a convenient form. In this book I have tried to take a fresh look at some of this basic material and to organize it in a coherent fashion. The text is as self-contained as I could reasonably make it and should be quite accessible to anyone who has an elementary knowledge of point-set topology and group theory. This book is based on a course of 16 graduate lectures given at Oxford and elsewhere from time to time. In a course of that length one cannot discuss too many topics without being unduly superficial. However, this was never intended as a treatise on the subject but rather as a short introductory course which will, I hope, prove useful to specialists and non-specialists alike. The introduction contains a description of the contents. No algebraic or differen tial topology is involved, although I have borne in mind the needs of students of those branches of the subject. Exercises for the reader are scattered throughout the text, while suggestions for further reading are contained in the lists of references at the end of each chapter. In most cases these lists include the main sources I have drawn on, but this is not the type of book where it is practicable to give a reference for everything."
A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.
'Et moi .... si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aUe.' it belongs. on the topmost shelf next Jules Verne where to the dusty canister labelled 'discarded non. The series is divergent: therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
"La narraci6n literaria es la evocaci6n de las nostalgias. " ("Literary narration is the evocation of nostalgia. ") G. G. Marquez, interview in Puerta del Sol, VII, 4, 1996. A Personal Prehistory In 1972 I started cooperating with members of the Biodynamics Research Unit at the Mayo Clinic in Rochester, Minnesota, which was under the direction of Earl H. Wood. At that time, their ambitious (and eventually realized) dream was to build the Dynamic Spatial Reconstructor (DSR), a device capable of collecting data regarding the attenuation of X-rays through the human body fast enough for stop-action imaging the full extent of the beating heart inside the thorax. Such a device can be applied to study the dynamic processes of cardiopulmonary physiology, in a manner similar to the application of an ordinary cr (computerized tomography) scanner to observing stationary anatomy. The standard method of displaying the information produced by a cr scanner consists of showing two-dimensional images, corresponding to maps of the X-ray attenuation coefficient in slices through the body. (Since different tissue types attenuate X-rays differently, such maps provide a good visualization of what is in the body in those slices; bone - which attenuates X-rays a lot - appears white, air appears black, tumors typically appear less dark than the surrounding healthy tissue, etc. ) However, it seemed to me that this display mode would not be appropriate for the DSR.
Knot theory is a rapidly developing field of research with many applications not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of knot theory from its very beginnings to today's most recent research results. The topics include Alexander polynomials, Jones type polynomials, and Vassiliev invariants. With its appendix containing many useful tables and an extended list of references with over 3,500 entries it is an indispensable book for everyone concerned with knot theory. The book can serve as an introduction to the field for advanced undergraduate and graduate students. Also researchers working in outside areas such as theoretical physics or molecular biology will benefit from this thorough study which is complemented by many exercises and examples.
The origins of this volume can be traced back to a conference on "Ethics, Economic and Business" organized by Columbia Busi ness School in March of 1993, and held in the splendid facilities of Columbia's Casa Italiana. Preliminary versions of several of the papers were presented at that meeting. In July 1994 the Fields Institute of Mathematical Sciences sponsored a workshop on "Geometry, Topology and Markets" additional papers and more refined versions of the original papers were presented there. They were published in their present versions in Social Choice and Wel fare, volume 14, number 2, 1997. The common aim of these workshops and this volume is to crystallize research in an area which has emerged rapidly in the last fifteen years, the area of topological approaches to social choice and the theory of games. The area is attracting increasing interest from social choice theorists, game theorists, mathematical econ omists and mathematicians, yet there is no authoritative collection of papers in the area. Nor is there any surveyor book to give a perspective and act as a guide to the issues in and contributions to this new area. One of the two aims of this volume is in some measure to play this role: the other aim is of course to present interesting and surprising new results." |
You may like...
Bridging Algebra, Geometry, and Topology
Denis Ibadula, Willem Veys
Hardcover
Directed Algebraic Topology and…
Lisbeth Fajstrup, Eric Goubault, …
Hardcover
R3,273
Discovery Miles 32 730
Noncommutative Iwasawa Main Conjectures…
John Coates, Peter Schneider, …
Hardcover
R5,250
Discovery Miles 52 500
A Journey Through Discrete Mathematics…
Martin Loebl, Jaroslav Nesetril, …
Hardcover
R4,413
Discovery Miles 44 130
Lectures on Morse Homology
Augustin Banyaga, David Hurtubise
Hardcover
R2,379
Discovery Miles 23 790
The Optimal Homotopy Asymptotic Method…
Vasile Marinca, Nicolae Herisanu
Hardcover
R3,591
Discovery Miles 35 910
Operator Algebras and Applications - The…
Toke M. Carlsen, Nadia S. Larsen, …
Hardcover
R6,940
Discovery Miles 69 400
Motivic Integration
Antoine Chambert-Loir, Johannes Nicaise, …
Hardcover
R3,699
Discovery Miles 36 990
|