![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > Algebraic topology
This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s.The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
This comprehensive text focuses on the homotopical technology in use at the forefront of modern algebraic topology. Following on from a standard introductory algebraic topology sequence, it will provide students with a comprehensive background in spectra and structured ring spectra. Each chapter is an extended tutorial by a leader in the field, offering the first really accessible treatment of the modern construction of the stable category in terms of both model categories of point-set diagram spectra and infinity-categories. It is one of the only textbook sources for operadic algebras, structured ring spectra, and Bousfield localization, which are now basic techniques in the field, and the book provides a rare expository treatment of spectral algebraic geometry. Together the contributors - Emily Riehl, Daniel Dugger, Clark Barwick, Michael A. Mandell, Birgit Richter, Tyler Lawson, and Charles Rezk - offer a complete, authoritative source to learn the foundations of this vibrant area.
K-theory is often considered a complicated `specialist's' theory. This book is an introduction to the basics and provides detailed explanation of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed and then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity.
This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microlocal sheaf theory accessible to a wide audience of readers interested in symplectic geometry. Much of this material has, until now, been scattered throughout the existing literature; this text finally collects that information into one convenient volume. After providing an overview of symplectic geometry, ranging from its background to modern developments, the author reviews the preliminaries with precision. This refresher ensures readers are prepared for the thorough exploration of the Tamarkin category that follows. A variety of applications appear throughout, such as sheaf quantization, sheaf interleaving distance, and sheaf barcodes from projectors. An appendix offers additional perspectives by highlighting further useful topics. Quantitative Tamarkin Theory is ideal for graduate students interested in symplectic geometry who seek an accessible alternative to the algebraic analysis method. A background in algebra and differential geometry is recommended. This book is part of the "Virtual Series on Symplectic Geometry" http://www.springer.com/series/16019
This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory's most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience.
The book is a collection of surveys and original research articles concentrating on new perspectives and research directions at the crossroads of algebraic geometry, topology, and singularity theory. The papers, written by leading researchers working on various topics of the above fields, are the outcome of the "Nemethi60: Geometry and Topology of Singularities" conference held at the Alfred Renyi Institute of Mathematics in Budapest, from May 27 to 31, 2019. Both the conference and this resulting volume are in honor of Professor Andras Nemethi, on the occasion of his 60th birthday, whose work plays a decisive and influential role in the interactions between the above fields. The book should serve as a valuable resource for graduate students and researchers to deepen the new perspectives, methods, and connections between geometry and topology regarding singularities.
This book, the third book in the four-volume series in algebra, deals with important topics in homological algebra, including abstract theory of derived functors, sheaf co-homology, and an introduction to etale and l-adic co-homology. It contains four chapters which discuss homology theory in an abelian category together with some important and fundamental applications in geometry, topology, algebraic geometry (including basics in abstract algebraic geometry), and group theory. The book will be of value to graduate and higher undergraduate students specializing in any branch of mathematics. The author has tried to make the book self-contained by introducing relevant concepts and results required. Prerequisite knowledge of the basics of algebra, linear algebra, topology, and calculus of several variables will be useful.
Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available.
Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available.
This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors's lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.
This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincare Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes' Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss-Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow's Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach - in terms of Lie algebras - to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version. In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmuller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
Homological mirror symmetry has its origins in theoretical physics but is now of great interest in mathematics due to the deep connections it reveals between different areas of geometry and algebra. This book offers a self-contained and accessible introduction to the subject via the representation theory of algebras and quivers. It is suitable for graduate students and others without a great deal of background in homological algebra and modern geometry. Each part offers a different perspective on homological mirror symmetry. Part I introduces the A-infinity formalism and offers a glimpse of mirror symmetry using representations of quivers. Part II discusses various A- and B-models in mirror symmetry and their connections through toric and tropical geometry. Part III deals with mirror symmetry for Riemann surfaces. The main mathematical ideas are illustrated by means of simple examples coming mainly from the theory of surfaces, helping the reader connect theory with intuition.
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on 'Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects' and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank's contribution gives an overview of the use of etale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Ostvaer, based in part on the Nelder Fellow lecture series by Ostvaer, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.
This book gathers the proceedings of the 2018 Abel Symposium, which was held in Geiranger, Norway, on June 4-8, 2018. The symposium offered an overview of the emerging field of "Topological Data Analysis". This volume presents papers on various research directions, notably including applications in neuroscience, materials science, cancer biology, and immune response. Providing an essential snapshot of the status quo, it represents a valuable asset for practitioners and those considering entering the field.
This book carefully presents a unified treatment of equivariant Poincare duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates to the use of infinity-categories. As with the original lectures, the text is meant to be a leisurely read suitable for advanced graduate students and interested researchers in topology and adjacent fields.
This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson-Bernstein-Deligne-Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito's deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.
J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.
Intersection homology is a version of homology theory that extends Poincare duality and its applications to stratified spaces, such as singular varieties. This is the first comprehensive expository book-length introduction to intersection homology from the viewpoint of singular and piecewise-linear chains. Recent breakthroughs have made this approach viable by providing intersection homology and cohomology versions of all the standard tools in the homology tool box, making the subject readily accessible to graduate students and researchers in topology as well as researchers from other fields. This text includes both new research material and new proofs of previously-known results in intersection homology, as well as treatments of many classical topics in algebraic and manifold topology. Written in a detailed but expository style, this book is suitable as an introduction to intersection homology or as a thorough reference.
Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories. The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories.
Intersection theory has played a prominent role in the study of closed symplectic 4-manifolds since Gromov's famous 1985 paper on pseudoholomorphic curves, leading to myriad beautiful rigidity results that are either inaccessible or not true in higher dimensions. Siefring's recent extension of the theory to punctured holomorphic curves allowed similarly important results for contact 3-manifolds and their symplectic fillings. Based on a series of lectures for graduate students in topology, this book begins with an overview of the closed case, and then proceeds to explain the essentials of Siefring's intersection theory and how to use it, and gives some sample applications in low-dimensional symplectic and contact topology. The appendices provide valuable information for researchers, including a concise reference guide on Siefring's theory and a self-contained proof of a weak version of the Micallef-White theorem.
This third volume in Vladimir Tkachuk's series on Cp-theory problems applies all modern methods of Cp-theory to study compactness-like properties in function spaces and introduces the reader to the theory of compact spaces widely used in Functional Analysis. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level. The first volume, Topological and Function Spaces (c) 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. The second volume, Special Features of Function Spaces (c) 2014, continued from the first, giving reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing 500 carefully selected problems and exercises with complete solutions. This third volume is self-contained and works in tandem with the other two, containing five hundred carefully selected problems and solutions. It can also be considered as an introduction to advanced set theory and descriptive set theory, presenting diverse topics of the theory of function spaces with the topology of point wise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology.
Algebraic topology is a basic part of modern mathematics, and some
knowledge of this area is indispensable for any advanced work
relating to geometry, including topology itself, differential
geometry, algebraic geometry, and Lie groups. This book provides a
detailed treatment of algebraic topology both for teachers of the
subject and for advanced graduate students in mathematics either
specializing in this area or continuing on to other fields. |
You may like...
Thermo-Hydro-Mechanical-Chemical…
Olaf Kolditz, Hua Shao, …
Hardcover
Finite Volumes for Complex Applications…
Jurgen Fuhrmann, Mario Ohlberger, …
Hardcover
R3,604
Discovery Miles 36 040
Mechanical Properties of Polycarbonate…
Weihong Zhang, Yingjie Xu
Hardcover
R3,432
Discovery Miles 34 320
Using Airborne Lidar in Archaeological…
Simon Crutchley, Peter Crow
Paperback
R1,147
Discovery Miles 11 470
Object Management in Distributed…
Wujuan Lin, Bharadwaj Veeravalli
Hardcover
R2,748
Discovery Miles 27 480
|