![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > Algebraic topology
This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; The underlying theme of the entire book is the Eckmann-Hilton duality theory. This approach provides a unifying motif, clarifies many concepts, and reduces the amount of repetitious material. The subject matter is treated carefully with attention to detail, motivation is given for many results, there are several illustrations, and there are a large number of exercises of varying degrees of difficulty. It is assumed that the reader has had some exposure to the rudiments of homology theory and fundamental group theory. These topics are discussed in the appendices. The book can be used as a text for the second semester of an algebraic topology course. The intended audience would be advanced undergraduates or graduate students. The book could also be used by anyone with a little background in topology who wishes to learn some homotopy theory.
This volume exposes the theory of biset functors for finite groups, which yields a unified framework for operations of induction, restriction, inflation, deflation and transport by isomorphism. The first part recalls the basics on biset categories and biset functors. The second part is concerned with the Burnside functor and the functor of complex characters, together with semisimplicity issues and an overview of Green biset functors. The last part is devoted to biset functors defined over p-groups for a fixed prime number p. This includes the structure of the functor of rational representations and rational p-biset functors. The last two chapters expose three applications of biset functors to long-standing open problems, in particular the structure of the Dade group of an arbitrary finite p-group.This book is intended both to students and researchers, as it gives a didactic exposition of the basics and a rewriting of advanced results in the area, with some new ideas and proofs.
Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed. Reviews: " a book filling an obvious gap in the literature and the authors have done an excellent job on it. No monograph or expository paper has been published on this topic in the last twenty-eight years." - Analele Universitatii din Timisoara " is clearly presented and a brief summary preceding every chapter is useful to the reader. The book should prove enlightening to a broad range of readers including prospective students and researchers who want to apply simplicial techniques for whatever reason." - Zentralblatt MATH " they succeed. The book is an excellent account of simplicial homotopy theory from a modern point of view ] The book is well written. ] The book can be highly recommended to anybody who wants to learn and to apply simplicial techniques and/or the theory of (simplicial) closed model categories." - Mathematical Reviews"
The need for an axiomatic treatment of homology and cohomology theory has long been felt by topologists. Professors Eilenberg and Steenrod present here for the first time an axiomatization of the complete transition from topology to algebra. Originally published in 1952. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The notion of an operad was introduced 40 years ago in algebraic topology in order to model the structure of iterated loop spaces [6, 47, 60]. Since then, operads have been used fruitfully in many ?elds of mathematics and physics. Indeed, the notion of an operad supplies both a conceptual and e?ective device to handle a variety of algebraic structures in various situations. Many usualcategoriesofalgebras(likethecategoryofcommutativeandassociative algebras, the category of associative algebras, the category of Lie algebras, thecategoryofPoissonalgebras,...)areassociatedtooperads. The main successful applications of operads in algebra occur in defor- tion theory: the theory of operads uni?es the construction of deformation complexes, gives generalizations of powerful methods of rational homotopy, and brings to light deep connections between the cohomology of algebras, the structure of combinatorial polyhedra, the geometry of moduli spaces of surfaces, and conformal ?eld theory. The new proofs of the existence of deformation-quantizations by Kontsevich and Tamarkin bring together all these developments and lead Kontsevich to the fascinating conjecture that the motivic Galois group operates on the space of deformation-quantizations (see [35]). The purpose of this monograph is to study not operads themselves, but modules over operads as a device to model functors between categories of algebras as e?ectively as operads model categories of algebras. Modules overoperads occur naturally when one needs to representuniv- sal complexes associated to algebras over operads (see [14, 54]). Modules overoperads havenot been studied as extensively as operads yet.
Poincare duality algebras originated in the work of topologists on the cohomology of closed manifolds, and Macaulay's dual systems in the study of irreducible ideals in polynomial algebras. These two ideas are tied together using basic commutative algebra involving Gorenstein algebras. Steenrod operations also originated in algebraic topology, but may best be viewed as a means of encoding the information often hidden behind the Frobenius map in characteristic p<>0. They provide a noncommutative tool to study commutative algebras over a Galois field. In this Tract the authors skilfully bring together these ideas and apply them to problems in invariant theory. A number of remarkable and unexpected interdisciplinary connections are revealed that will interest researchers in the areas of commutative algebra, invariant theory or algebraic topology.
This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.
De Rham cohomology is the cohomology of differential forms. This book offers a self-contained exposition to this subject and to the theory of characteristic classes from the curvature point of view. It requires no prior knowledge of the concepts of algebraic topology or cohomology. The first ten chapters study cohomology of open sets in Euclidean space, treat smooth manifolds and their cohomology and end with integration on manifolds. The last eleven chapters cover Morse theory, index of vector fields, Poincaré duality, vector bundles, connections and curvature, Chern and Euler classes, Thom isomorphism, and the general Gauss-Bonnet theorem. The text includes over 150 exercises, and gives the background necessary for the modern developments in gauge theory and geometry in four dimensions, but it also serves as an introductory course in algebraic topology. It will be invaluable to anyone who wishes to know about cohomology, curvature, and their applications.
Research mathematicians in algebraic topology will be interested in this new attempt to classify homotopy types of simply connected CW-complexes. This book provides a modern treatment of a long established set of questions in algebraic topology. The author is a leading figure in this important research area.
This volume contains eight research papers inspired by the 2019 'Equivariant Topology and Derived Algebra' conference, held at the Norwegian University of Science and Technology, Trondheim in honour of Professor J. P. C. Greenlees' 60th birthday. These papers, written by experts in the field, are intended to introduce complex topics from equivariant topology and derived algebra while also presenting novel research. As such this book is suitable for new researchers in the area and provides an excellent reference for established researchers. The inter-connected topics of the volume include: algebraic models for rational equivariant spectra; dualities and fracture theorems in chromatic homotopy theory; duality and stratification in tensor triangulated geometry; Mackey functors, Tambara functors and connections to axiomatic representation theory; homotopy limits and monoidal Bousfield localization of model categories.
Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. The book also contains some examples of computations and applications.
Fibre bundles, now an integral part of differential geometry, are also of great importance in modern physics--such as in gauge theory. This book, a succinct introduction to the subject by renown mathematician Norman Steenrod, was the first to present the subject systematically. It begins with a general introduction to bundles, including such topics as differentiable manifolds and covering spaces. The author then provides brief surveys of advanced topics, such as homotopy theory and cohomology theory, before using them to study further properties of fibre bundles. The result is a classic and timeless work of great utility that will appeal to serious mathematicians and theoretical physicists alike.
This book presents a coherent account of the current status of etale homotopy theory, a topological theory introduced into abstract algebraic geometry by M. Artin and B. Mazur. Eric M. Friedlander presents many of his own applications of this theory to algebraic topology, finite Chevalley groups, and algebraic geometry. Of particular interest are the discussions concerning the Adams Conjecture, K-theories of finite fields, and Poincare duality. Because these applications have required repeated modifications of the original formulation of etale homotopy theory, the author provides a new treatment of the foundations which is more general and more precise than previous versions. One purpose of this book is to offer the basic techniques and results of etale homotopy theory to topologists and algebraic geometers who may then apply the theory in their own work. With a view to such future applications, the author has introduced a number of new constructions (function complexes, relative homology and cohomology, generalized cohomology) which have immediately proved applicable to algebraic K-theory.
This book is intended as a one-semester course in general topology, a.k.a. point-set topology, for undergraduate students as well as first-year graduate students. Such a course is considered a prerequisite for further studying analysis, geometry, manifolds, and certainly, for a career of mathematical research. Researchers may find it helpful especially from the comprehensive indices.General topology resembles a language in modern mathematics. Because of this, the book is with a concentration on basic concepts in general topology, and the presentation is of a brief style, both concise and precise. Though it is hard to determine exactly which concepts therein are basic and which are not, the author makes efforts in the selection according to personal experience on the occurrence frequency of notions in advanced mathematics, and to related books that have received admirable reviews.This book also contains exercises for each chapter with selected solutions. Interrelationships among concepts are taken into account frequently. Twelve particular topological spaces are repeatedly exploited, which serve as examples to learn new concepts based on old ones.
ltats - avec une generalite minimale, souvent insuffisante pour les applications -et une idee de leur demonstration. Pour des resultats complets, ou des demonstrationsdetaillees, SGA 4 reste indispensable.Le "Rapport sur la formule des traces" contient une demonstration complete dela formule des traces pour l'endomorphisme de Frobenius. La demonstration est celledonnee par Grothendieck dans SGA 5, elaguee de tout detail inutile. Ce rapportdevrait permettre a utilisateur d'oublier SGA 5, qu'on pourra considerer comme uneserie de digression, certaines tres interessantes. Son existence permettra de publierprochainement SGA 5 tel quel. Il est complete par l'expose "Applications de laformule des traces aux sommes trigonometriques" qui explique comment la formuledes traces permet l'etude de sommes trigonometriques, et donne des exemples..
"Aus den Besprechungen: ""Although this volume appears as a set of "Lecture Notes," in fact it is a rather polished and complete text on homotopy theory, from the viewpoint of offering a very careful examination of the foundations. The authors introduce the notion of homotopy in general, and then launch into an elaborate study of cofibrations. The second major chapter concerns fibrations. The last chapter centers around homotopy sets and groups, induced homomorphisms and exact sequences, excision in the stable range and suspension. It is a well polished piece of exposition, suitable for a reader who knows point-set topology and basic category theory." "Mathematical Reviews"
This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. "Cohomological Induction and Unitary Representations" develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.
This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson-Bernstein-Deligne-Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito's deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.
On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial. Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials. |
![]() ![]() You may like...
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,583
Discovery Miles 45 830
Motivic Integration
Antoine Chambert-Loir, Johannes Nicaise, …
Hardcover
R3,930
Discovery Miles 39 300
Singularities and Their Interaction with…
Javier Fernandez de Bobadilla, Tamas Laszlo, …
Hardcover
R5,132
Discovery Miles 51 320
|