![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer programming > Algorithms & procedures
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence, and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids, and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
With the proliferation of Software-as-a-Service (SaaS) offerings, it is becoming increasingly important for individual SaaS providers to operate their services at a low cost. This book investigates SaaS from the perspective of the provider and shows how operational costs can be reduced by using "multi tenancy," a technique for consolidating a large number of customers onto a small number of servers. Specifically, the book addresses multi tenancy on the database level, focusing on in-memory column databases, which are the backbone of many important new enterprise applications. For efficiently implementing multi tenancy in a farm of databases, two fundamental challenges must be addressed, (i) workload modeling and (ii) data placement. The first involves estimating the (shared) resource consumption for multi tenancy on a single in-memory database server. The second consists in assigning tenants to servers in a way that minimizes the number of required servers (and thus costs) based on the assumed workload model. This step also entails replicating tenants for performance and high availability. This book presents novel solutions to both problems.
From finance to artificial intelligence, genetic algorithms are a powerful tool with a wide array of applications. But you don't need an exotic new language or framework to get started; you can learn about genetic algorithms in a language you're already familiar with. Join us for an in-depth look at the algorithms, techniques, and methods that go into writing a genetic algorithm. From introductory problems to real-world applications, you'll learn the underlying principles of problem solving using genetic algorithms. Evolutionary algorithms are a unique and often overlooked subset of machine learning and artificial intelligence. Because of this, most of the available resources are outdated or too academic in nature, and none of them are made with Elixir programmers in mind. Start from the ground up with genetic algorithms in a language you are familiar with. Discover the power of genetic algorithms through simple solutions to challenging problems. Use Elixir features to write genetic algorithms that are concise and idiomatic. Learn the complete life cycle of solving a problem using genetic algorithms. Understand the different techniques and fine-tuning required to solve a wide array of problems. Plan, test, analyze, and visualize your genetic algorithms with real-world applications. Open your eyes to a unique and powerful field - without having to learn a new language or framework. What You Need: You'll need a macOS, Windows, or Linux distribution with an up-to-date Elixir installation.
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
Evolutionary algorithms constitute a class of well-known algorithms, which are designed based on the Darwinian theory of evolution and Mendelian theory of heritage. They are partly based on random and partly based on deterministic principles. Due to this nature, it is challenging to predict and control its performance in solving complex nonlinear problems. Recently, the study of evolutionary dynamics is focused not only on the traditional investigations but also on the understanding and analyzing new principles, with the intention of controlling and utilizing their properties and performances toward more effective real-world applications. In this book, based on many years of intensive research of the authors, is proposing novel ideas about advancing evolutionary dynamics towards new phenomena including many new topics, even the dynamics of equivalent social networks. In fact, it includes more advanced complex networks and incorporates them with the CMLs (coupled map lattices), which are usually used for spatiotemporal complex systems simulation and analysis, based on the observation that chaos in CML can be controlled, so does evolution dynamics. All the chapter authors are, to the best of our knowledge, originators of the ideas mentioned above and researchers on evolutionary algorithms and chaotic dynamics as well as complex networks, who will provide benefits to the readers regarding modern scientific research on related subjects.
This book presents physical-layer security as a promising paradigm for achieving the information-theoretic secrecy required for wireless networks. It explains how wireless networks are extremely vulnerable to eavesdropping attacks and discusses a range of security techniques including information-theoretic security, artificial noise aided security, security-oriented beamforming, and diversity assisted security approaches. It also provides an overview of the cooperative relaying methods for wireless networks such as orthogonal relaying, non-orthogonal relaying, and relay selection.Chapters explore the relay-selection designs for improving wireless secrecy against eavesdropping in time-varying fading environments and a joint relay and jammer selection for wireless physical-layer security, where a relay is used to assist the transmission from the source to destination and a friendly jammer is employed to transmit an artificial noise for confusing the eavesdropper. Additionally, the security-reliability tradeoff (SRT) is mathematically characterized for wireless communications and two main relay-selection schemes, the single-relay and multi-relay selection, are devised for the wireless SRT improvement. In the single-relay selection, only the single best relay is chosen for assisting the wireless transmission, while the multi-relay selection invokes multiple relays for simultaneously forwarding the source transmission to the destination.Physical-Layer Security for Cooperative Relay Networks is designed for researchers and professionals working with networking or wireless security. Advanced-level students interested in networks, wireless, or privacy will also find this book a useful resource.
In this monograph we introduce and examine four new temporal logic formalisms that can be used as specification languages for the automated verification of the reliability of hardware and software designs with respect to a desired behavior. The work is organized in two parts. In the first part two logics for computations, the graded computation tree logic and the computation tree logic with minimal model quantifiers are discussed. These have proved to be useful in describing correct executions of monolithic closed systems. The second part focuses on logics for strategies, strategy logic and memoryful alternating-time temporal logic, which have been successfully applied to formalize several properties of interactive plays in multi-entities systems modeled as multi-agent games.
This book focuseson protocols and constructions that make good use of the building blocks for symmetric cryptography. The book brings under one roof, several esoteric strategies of utilizing symmetric cryptographic blocks. The specific topics addressed by the book include various key distribution strategies for unicast, broadcast and multicast security and strategies for constructing efficient digests of dynamic databases using binary hash trees."
Hardbound. This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.
The papers in this volume represent a broad, applied swath of advanced contributions to the 2015 ICSA/Graybill Applied Statistics Symposium of the International Chinese Statistical Association, held at Colorado State University in Fort Collins. The contributions cover topics that range from statistical applications in business and finance to applications in clinical trials and biomarker analysis. Each papers was peer-reviewed by at least two referees and also by an editor. The conference was attended by over 400 participants from academia, industry, and government agencies around the world, including from North America, Asia, and Europe.
This book introduces new logic primitives for electronic design automation tools. The author approaches fundamental EDA problems from a different, unconventional perspective, in order to demonstrate the key role of rethinking EDA solutions in overcoming technological limitations of present and future technologies. The author discusses techniques that improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. Readers will be enabled to accelerate formal methods by studying core properties of logic circuits and developing new frameworks for logic reasoning engines.
This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.
This book investigates the coordinated power management of multi-tenant data centers that account for a large portion of the data center industry. The authors include discussion of their quick growth and their electricity consumption, which has huge economic and environmental impacts. This book covers the various coordinated management solutions in the existing literature focusing on efficiency, sustainability, and demand response aspects. First, the authors provide a background on the multi-tenant data center covering the stake holders, components, power infrastructure, and energy usage. Then, each power management mechanism is described in terms of motivation, problem formulation, challenges and solution.
This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.
The book presents various state-of-the-art approaches for process synchronization in a distributed environment. The range of algorithms discussed in the book starts from token based mutual exclusion algorithms that work on tree based topology. Then there are interesting solutions for more flexible logical topology like a directed graph, with or without cycle. In a completely different approach, one of the chapters presents two recent voting-based DME algorithms. All DME algorithms presented in the book aim to ensure fairness in terms of first come first serve (FCFS) order among equal priority processes. At the same time, the solutions consider the priority of the requesting processes and allocate resource for the earliest request when no such request from a higher priority process is pending.
This book develops a coherent and quite general theoretical approach to algorithm design for iterative learning control based on the use of operator representations and quadratic optimization concepts including the related ideas of inverse model control and gradient-based design. Using detailed examples taken from linear, discrete and continuous-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately as their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates the underlying robustness of the paradigm and also includes new control laws that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference and auxiliary signals and also to support new properties such as spectral annihilation. Iterative Learning Control will interest academics and graduate students working in control who will find it a useful reference to the current status of a powerful and increasingly popular method of control. The depth of background theory and links to practical systems will be of use to engineers responsible for precision repetitive processes.
This monograph presents examples of best practices when combining bioinspired algorithms with parallel architectures. The book includes recent work by leading researchers in the field and offers a map with the main paths already explored and new ways towards the future. Parallel Architectures and Bioinspired Algorithms will be of value to both specialists in Bioinspired Algorithms, Parallel and Distributed Computing, as well as computer science students trying to understand the present and the future of Parallel Architectures and Bioinspired Algorithms.
This volume presents some recent and principal developments related to computational intelligence and optimization methods in control. Theoretical aspects and practical applications of control engineering are covered by 14 self-contained contributions. Additional gems include the discussion of future directions and research perspectives designed to add to the reader's understanding of both the challenges faced in control engineering and the insights into the developing of new techniques. With the knowledge obtained, readers are encouraged to determine the appropriate control method for specific applications.
This reference and handbook describes theory, algorithms and applications of the Global Positioning System (GPS/Glonass/Galileo/Compass). It is primarily based on source-code descriptions of the KSGsoft program developed at the GFZ in Potsdam. The theory and algorithms are extended and verified for a new development of a multi-functional GPS/Galileo software. Besides the concepts such as the unified GPS data processing method, the diagonalisation algorithm, the adaptive Kalman filter, the general ambiguity search criteria, and the algebraic solution of variation equation reported in the first edition, the equivalence theorem of the GPS algorithms, the independent parameterisation method, and the alternative solar radiation model reported in the second edition, the modernisation of the GNSS system, the new development of the theory and algorithms, and research in broad applications are supplemented in this new edition. Mathematically rigorous, the book begins with the introduction, the basics of coordinate and time systems and satellite orbits, as well as GPS observables, and deals with topics such as physical influences, observation equations and their parameterisation, adjustment and filtering, ambiguity resolution, software development and data processing and the determination of perturbed orbits.
This book presents material from 3 survey lectures and 14 additional invited lectures given at the Euroconference "Computational Methods for Representations of Groups and Algebras" held at Essen University in April 1997. The purpose of this meeting was to provide a survey of general theoretical and computational methods and recent advances in the representation theory of groups and algebras. The foundations of these research areas were laid in survey articles by P. DrAxler and R. NArenberg on "Classification problems in the representation theory of finite-dimensional algebras," R. A. Wilson on "Construction of finite matrix groups" and E. Green on "Noncommutative GrAbner bases, and projective resolutions." Furthermore, new applications of the computational methods in linear algebra to the revision of the classification of finite simple sporadic groups are presented. Computational tools (including high-performance computations on supercomputers) have become increasingly important for classification problems. They are also inevitable for the construction of projective resolutions of finitely generated modules over finite-dimensional algebras and the study of group cohomology and rings of invariants. A major part of this book is devoted to a survey of algorithms for computing special examples in the study of Grothendieck groups, quadratic forms and derived categories of finite-dimensional algebras. Open questions on Lie algebras, Bruhat orders, Coxeter groups and Kazhdan Lusztig polynomials are investigated with the aid of computer programs. The contents of this book provide an overview on the present state of the art. Therefore it will be very useful for graduate students and researchers in mathematics, computer science and physics.
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
This monograph illustrates important notions in security reductions and essential techniques in security reductions for group-based cryptosystems. Using digital signatures and encryption as examples, the authors explain how to program correct security reductions for those cryptographic primitives. Various schemes are selected and re-proven in this book to demonstrate and exemplify correct security reductions. This book is suitable for researchers and graduate students engaged with public-key cryptography.
This book highlights the current challenges for engineers involved in product development and the associated changes in procedure they make necessary. Methods for systematically analyzing the requirements for safety and security mechanisms are described using examples of how they are implemented in software and hardware, and how their effectiveness can be demonstrated in terms of functional and design safety are discussed. Given today's new E-mobility and automated driving approaches, new challenges are arising and further issues concerning "Road Vehicle Safety" and "Road Traffic Safety" have to be resolved. To address the growing complexity of vehicle functions, as well as the increasing need to accommodate interdisciplinary project teams, previous development approaches now have to be reconsidered, and system engineering approaches and proven management systems need to be supplemented or wholly redefined. The book presents a continuous system development process, starting with the basic requirements of quality management and continuing until the release of a vehicle and its components for road use. Attention is paid to the necessary definition of the respective development item, the threat-, hazard- and risk analysis, safety concepts and their relation to architecture development, while the book also addresses the aspects of product realization in mechanics, electronics and software as well as for subsequent testing, verification, integration and validation phases. In November 2011, requirements for the Functional Safety (FuSa) of road vehicles were first published in ISO 26262. The processes and methods described here are intended to show developers how vehicle systems can be implemented according to ISO 26262, so that their compliance with the relevant standards can be demonstrated as part of a safety case, including audits, reviews and assessments.
This unique textbook/reference presents unified coverage of bioinformatics topics relating to both biological sequences and biological networks, providing an in-depth analysis of cutting-edge distributed algorithms, as well as of relevant sequential algorithms. In addition to introducing the latest algorithms in this area, more than fifteen new distributed algorithms are also proposed. Topics and features: reviews a range of open challenges in biological sequences and networks; describes in detail both sequential and parallel/distributed algorithms for each problem; suggests approaches for distributed algorithms as possible extensions to sequential algorithms, when the distributed algorithms for the topic are scarce; proposes a number of new distributed algorithms in each chapter, to serve as potential starting points for further research; concludes each chapter with self-test exercises, a summary of the key points, a comparison of the algorithms described, and a literature review. |
You may like...
Tools for High Performance Computing…
Christoph Niethammer, Jose Gracia, …
Hardcover
R3,214
Discovery Miles 32 140
|