![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Zoology & animal sciences > Animal reproduction
Fish resources in natural water bodies are tending to decrease due to intensified fishing, the extensive construction of hydropower plants on rivers, and the pollution of seas and freshwater basins by indus trial and agricultural wastes. Nowadays only artificial fish rearing can meet man's requirements in fish products. Fish breeding is still very young as compared to plant breeding and animal husbandry. Although fishes have been reared artificially since ancient times in certain Asian countries, this usually included the cultivation of embryos and larvae caught in rivers and lakes. Among the exceptions, only the common carp Cyprinus carpio and the domesticated variety of the crucian carp, the goldfish Carassius auratus, which were cultivated in the East, may be mentioned. Com mon carp breeding began in China about 2000 years ago but was la ter banned by one of the emperors and started again only relatively recently. The goldfish has been cultivated for decorative purposes for about 1000 years. Many remarkable varieties of the goldfish have been developed in China and later in Japan. The first improved breeds (German "races") of the common carp known in Europe appeared after the domestication of the Da nube wild carp in the seventeenth and eighteenth centuries. Local breeds of the carp were probably established somewhat later in Chi na, Japan and Indonesia; even now these breeds have only minor differences as compared to their ancestor, the Asian wild carp.
This publication contains the proceedings of a seminar held in Toulouse, France, on 10th, 11th and 12th June 1980, under the auspices of the Commission of the European Communities, Directorate General for Agriculture, Division for the Coordination of Agricultural Research, as part of a programme of research on beef production. The seminar was intended to bring together available experience on the utilisation of hereditary muscular hypertrophy for meat production in the member states of the European Communities. Although the phenomenon of double muscling has been exploited in various countries, particularly France, Italy and Belgium, different breeds are used and different methods of exploitation employed. An attempt was therefore made to bring together the collective experience of participants. Contributions ranged from those on the inheritance of muscular hypertrophy to alternative production systems and from fundamental studies of muscle growth to practical ways of selling the additional musrile found in animals with muscular hypertrophy. The collection of assembled papers and discussions thus represents one of the most extensive reviews of the subject that has been attempted.
The farming of deer as an alternative to traditional livestock enterprises is now firmly established and is expanding within several countries of the European Economic Community. However, the successful farming of deer requires the adoption of appropriate management schemes to accommodate the biological requirements of these animals. Much experience has now been gained and it is essential that this information becomes readily available througout the Community. In addition, as the volume of deer farming has increased a number of health problems have become recognised which present features distinct from other domestic ruminants. Although knowledge is still incomplete it would appear that deer may react to certain pathogens in a very different way to other domestic ruminants, presenting new problems of diagnosis and control. The rapid detection of these conditions and development of appropriate control strategies will be essential for the establishment of an economically viable deer farming industry in the Community. Much of the information on the management of farmed deer and their diseases is anecdotal and fragmented and the purpose of this meeting was to accelerate the dissemination of this knowledge between scientists in the Community committed to the development of this area of agricultural industry. The meeting, financed by the Commission of the European Communities from its budget for the Coordination of Agricultural Research in the Community was held in Scotland, on the 10th to 11th December, 1987.
Topics for the Beltsville Symposia are selected to highlight specific areas of research and science policy that are of concern to scientists in the Beltsville Area as well as to the general scientific community. Each sympo sium in the series is structured to provide a realistic appraisal of current findings, research progress, and relevant policy issues within the constraints established by the organizing committee. Thus, the presentations and dis cussions that have marked these symposia have had a strong appeal to the broad community of scientists. Knowledge of the diversity of living organisms is still quite limited. Since the time of Linnaeus, about 1.7 million species have been described. The actual number has been estimated between 5-50 million. Many species, land races, and strains are vanishing. Clearly, the world's scientific institutions are inadequately equipped to attain sufficient knowledge of a significant fraction of the diverse living forms. Also, efforts in the collection and preservation of germplasm of plants and animals urgently need to be strengthened. These mattes are critically important to future generations. This symposium addresses vital concerns of biotic diversity and germ plasm preservation from diverse perspectives. Many of the parts provide concrete recommendations for action, and they call attention to areas of research that must be pursued with intensity."
In most breeding programs of plant and animal species, genetic data (such as data from field progeny tests) are used to rank parents and help choose candidates for selection. In general, all selection processes first rank the candidates using some function of the observed data and then choose as the selected portion those candidates with the largest (or smallest) values of that function. To make maximum progress from selection, it is necessary to use a function of the data that results in the candidates being ranked as closely as possible to the true (but always unknown) ranking. Very often the observed data on various candidates are messy and unbalanced and this complicates the process of developing precise and accurate rankings. For example, for any given candidate, there may be data on that candidate and its siblings growing in several field tests of different ages. Also, there may be performance data on siblings, ancestors or other relatives from greenhouse, laboratory or other field tests. In addition, data on different candidates may differ drastically in terms of quality and quantity available and may come from varied relatives. Genetic improvement programs which make most effective use of these varied, messy, unbalanced and ancestral data will maximize progress from all stages of selection. In this regard, there are two analytical techniques, best linear prediction (BLP) and best linear unbiased prediction (BLUP), which are quite well-suited to predicting genetic values from a wide variety of sources, ages, qualities and quantities of data.
From probe design to applications in clinical settings, this book provides a diverse set of instructive examples, guided by experts in the field who offer easy-to-follow experimentals. The book first offers an introduction to the basic principles of fluorescence and then describes applications of fluorogenic probes in real-time PCR, which currently is the gold standard for quantitative DNA and RNA analysis. Coverage extends the potential of realtime as well as advocates simplifications of the probe technologies. It also presents a new simplified molecular beacon design, EasyBeacons, and demonstrates the utility in DNA methylation profiling.
Drosophila is a comprehensive collection of methods and protocols for Drosophila, one of the oldest and most commonly used model organisms in modern biology. The protocols are written by the scientists who invented the methods. The text presents a diverse set of techniques that range from the basic handling of flies to more complex applications. This is the perfect reference manual for Drosophila researchers.
Every cell has developed mechanisms to respond to changes in its
environment and to adapt its growth and metabolism to unfavorable
conditions. The unicellular eukaryote yeast has long proven as a
particularly useful model system for the analysis of cellular
stress responses, and the completion of the yeast genome sequence
has only added to its power
Over the last ten years the introduction of computer intensive statistical methods has opened new horizons concerning the probability models that can be fitted to genetic data, the scale of the problems that can be tackled and the nature of the questions that can be posed. In particular, the application of Bayesian and likelihood methods to statistical genetics has been facilitated enormously by these methods. Techniques generally referred to as Markov chain Monte Carlo (MCMC) have played a major role in this process, stimulating synergies among scientists in different fields, such as mathematicians, probabilists, statisticians, computer scientists and statistical geneticists. Specifically, the MCMC "revolution" has made a deep impact in quantitative genetics. This can be seen, for example, in the vast number of papers dealing with complex hierarchical models and models for detection of genes affecting quantitative or meristic traits in plants, animals and humans that have been published recently. This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Most students in biology and agriculture lack the formal background needed to learn these modern biometrical techniques. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style, and have been written by and addressed to professional statisticians. For this reason, considerable more detail is offered than what may be warranted for a more mathematically apt audience. The book is divided into four parts. Part I gives a review of probability and distribution theory. Parts II and III present methods of inference and MCMC methods. Part IV discusses several models that can be applied in quantitative genetics, primarily from a Bayesian perspective. An effort has been made to relate biological to statistical parameters throughout, and examples are used profusely to motivate the developments. Daniel Sorensen is a Research Professor in Statistical Genetics, at the Department of Animal Breeding and Genetics in the Danish Institute of Agricultural Sciences. Daniel Gianola is Professor in the Animal Sciences, Biostatistics and Medical Informatics, and Dairy Science Departments of the University of Wisconsin-Madison. Gianola and Sorensen pioneered the introduction of Bayesian and MCMC methods in animal breeding. The authors have published and lectured extensively in applications of statistics to quantitative genetics.
Upcoming applications of genetic engineering in farm animals include higher yields, leaner meat, or disease resistance. The proceedings cover an analysis of the state of the art of the technology and its applications, an introduction to the specific application zoopharming (a method to produce biopharmaceuticals in transgenic livestock), including an analysis of the market for biopharmaceuticals. In addition an assessment of ethical aspects of livestock biotechnology and considerations regarding animal welfare implications are covered. The study is addressed to science, industry and politics.
Methods for Obtaining X-Ray Diffraction Patterns from Drosophila 198 Diffraction Patterns from Drosophila IFM 203 Concluding Remarks 211 Note Added in Proof 211 17. Functional and Ecological Effects of Isoform Variation in Insect Flight Muscle 214 James H. Marden Abstract 214 Introduction 215 Nature's Versatile Engine 215 The Underlying Genetics: An Underinflated Genome and a Hyperinflated Transcriptome and Proteome 216 Functional Effects of Isoform Variation 219 Alternative Splicing and the Generation of Combinatorial Complexity 220 Functional Consequences of Naturally Occurring Isoform Variation 220 18. Muscle Systems Design and Integration 230 Fritz- OlafLehmann Abstract 230 Power Requirements for Flight 230 Power Reduction 233 Power Constraints on Steering Capacity 234 Balancing Power and Control 236 Changes in Muscle Efficiency in Vivo 238 Concluding Remarks 239 From the Inside Out 19. Molecular Assays for Acto-Myosin Interactions 242 John C. Sparrow and Michael A. Geeves Abstract 242 Introduction 242 Myosin Purification and Preparation of the SI Fragment 243 Purification of Flight Muscle Actin 244 Assays of Myosin and Acto-Myosin 244 Major Conclusions Relating to the Enzymatic Properties of Insect Flight Muscle Acto-Myosin 247 Major Questions about Insect Flight Muscle Acto-Myosin Kinetics That Remain 249 20.
This book details the statistical concepts used in gene mapping, first in the experimental context of crosses of inbred lines and then in outbred populations, primarily humans. It presents elementary principles of probability and statistics, which are implemented by computational tools based on the R programming language to simulate genetic experiments and evaluate statistical analyses. Each chapter contains exercises, both theoretical and computational, some routine and others that are more challenging. The R programming language is developed in the text.
This work offers a fascinating insight into a crucial genetic process. Recombination is, quite simply, one of the most important topics in contemporary biology. This book is a totally comprehensive treatment of the subject, summarizing all existing views on the topic and at the same time putting them into context. It provides in-depth and up-to-date analysis of the chapter topics, and has been written by international experts in the field.
In one volume this book provides useful and innovative protocols developed specifically for the proteomic profiling of human tissues. The book provides high-throughput gel-based techniques, microarrays and a number of other methods used in proteomic research. This important book will prove indispensable to investigators of biomarker discovery and therapeutic response profiling, as well as those forging new paths in the fields of theranostics and personalized medicine.
In this book, numerous prominent aquaculture researchers contribute 27 chapters that provide overviews of aquaculture effects on the environment. They comprise a comprehensive synthesis of many ecological and genetic problems implicated in the practice of aquaculture and of many proven, attempted, or postulated solutions to those problems. This is an outstanding source of reference for all types of aquaculture activities.
Every biological system is the outcome of its evolution; therefore, the deciphering of its evolutionary history is of tremendous importance to understand the biology of a system. Since 1997 scientists of different disciplines have held an annual "Evolutionary Biology Meeting" at Marseille (France) in order to discuss their research developments, exchange ideas and start collaborations. Consisting of the most representative talks of the 11th meeting, this book provides an up-to-date overview of evolutionary concepts and how these concepts can be applied to a better understanding of various biological aspects. It is divided into the following four parts: Modelization of Evolution - Concepts in Evolutionary Biology - Knowledge - Applied Evolutionary Biology. This book is an invaluable source of information not only for evolutionary biologists, but also for biologists in general.
The book helps the reader to better understand cytogenetics and the intricacies of the methodology. The different methods of fluorescence in situ hybridization are discussed and the results achieved are presented. The book provides a comprehensive review of basic and applied aspects of cytogenetics and thus is of intense interest to all those interested in chromosomes and their alterations by different types of mutagens, including chemical mutagens and ionizing and nonionizing radiation, with special reference to electromagnetic fields.
The centromere is a chromosomal region that enables the accurate segregation of chromosomes during mitosis and meiosis. It holds sister chromatids together, and through its centromere DNA-protein complex known as the kinetochore binds spindle microtubules to bring about accurate chromosome movements. Despite this conserved function, centromeres exhibit dramatic difference in structure, size, and complexity. Extensive studies on centromeric DNA revealed its rapid evolution resulting often in significant difference even among closely related species. Such a plasticity of centromeric DNA could be explained by epigenetic c- trol of centromere function, which does not depend absolutely on primary DNA sequence. According to epigenetic centromere concept, which is thoroughly d- cussed by Tanya Panchenko and Ben Black in Chap. 1 of this book, centromere activation or inactivation might be caused by modifications of chromatin. Such acquired chromatin epigenetic modifications are then inherited from one cell di- sion to the next. Concerning centromere-specific chromatin modification, it is now evident that all centromeres contain a centromere specific histone H3 variant, CenH3, which replaces histone H3 in centromeric nucleosomes and provides a structural basis that epigenetically defines centromere and differentiates it from the surrounding chromatin. Recent insights into the CenH3 presented in this chapter add important mechanistic understanding of how centromere identity is initially established and subsequently maintained in every cell cycle.
Metabolism is the sum of the chemical reactions in cells that produce life-sustaining chemical energy and metabolites. In the post-genome era, metabolism has taken on new significance for biological scientists: metabolites are the chemical basis of phenotypes that are final expressions of genomic information. This book covers research on metabolomics, ranging from the development of specialized chemical analytical techniques to the construction of databases and methods for metabolic simulation. The authors have been directly involved in the development of all the subject areas, including capillary electrophoresis, liquid chromatography, mass spectrometry, metabolic databases, and metabolic simulation. Breakthrough achievements and the future of metabolome studies are described, making this book a valuable source for researchers in metabolomics in diverse fields, such as plant, animal, cellular, microbial, pharmaceutical, medical, and genetic sciences.
The sense of smell has an essential role in locating food, detecting predators, navigating, and communicating social information. Accordingly, the olfactory system has evolved complex repertoires of receptors to face these problems. Although the sense of taste has less far-reaching tasks, they are every bit as essential for the animals well-being, allowing it to reject toxic materials and to select nutritionally valuable food. The last decade has seen a massive advance in understanding the molecular logic of chemosensory information processing, beyond that already achieved in the rst few years following Linda Bucks discovery of odorant receptors. Shortly afterwards, the major principles of olfactory representation had been established in mammals as the one neuron/ one receptor rule and the convergence of neurons, which express the same receptor, onto individual modules in the olfactory bulb. In recent years, such studies have been extended to lower vertebrates, including shes and other phyla, i. e. , arthropods, worms, and insects, showing both the general validity of these concepts and some exceptions to the rule. In parallel, hallmarks of the molecular logic of taste sensation have been deciphered and found to differ in interesting ways from those of smell sensation.
Louis-Marie Houdebine and Jianglin Fan The study of biological functions of proteins and their possible roles in the pathogenesis of human diseases requires more and more relevant animal m- els. Although mice including genetically modified mice offer many possibilities, other non-murine species are absolutely required in some circumstances. Rabbit is one of these species, which has been widely used in biomedical studies. This animal is genetically and physiologically closer to humans including cardiov- cular system and metabolism characteristics. Rabbit is thus more appropriate than mice to study some diseases such as atherosclerosis and lipid metabolism. Because of its larger size, surgery manipulation, bleeding, and turn-over studies are much easier performed in rabbits than in mice. Furthermore, transgenic rabbits can be produced using microinjection and other methods such as lentiviral v- tors. Cloning in rabbits has been proved possible, even though still laborious and time-consuming. Hopefully, functional rabbit ES cell lines will be available in the coming years. Gene deletion or knock-out in rabbits will then become possible.
This book introduces the basic concepts and methods that are useful in the statistical analysis and modeling of the DNA-based marker and phenotypic data that arise in agriculture, forestry, experimental biology, and other fields. It concentrates on the linkage analysis of markers, map construction and quantitative trait locus (QTL) mapping, and assumes a background in regression analysis and maximum likelihood approaches. The strength of this book lies in the construction of general models and algorithms for linkage analysis, as well as in QTL mapping in any kind of crossed pedigrees initiated with inbred lines of crops.
Once per life cycle, mitotic nuclear divisions are replaced by meiosis I and II reducing chromosome number from the diploid level to a haploid genome and recombining chromosome arms by crossing-over. In animals, all this happens during formation of eggs and sperm in yeasts before spore formation. The mechanisms of reciprocal exchange at crossover/chiasma sites are central to mainstream meiosis. To initiate the meiotic exchange of DNA, surgical cuts are made as a form of calculated damage that subsequently is repaired by homologous recombination. These key events are accompanied by ancillary provisions at the level of chromatin organization, sister chromatid cohesion and differential centromere connectivity. Great progress has been made in recent years in our understanding of these mechanisms. Questions still open primarily concern the placement of and mutual coordination between neighboring crossover events. Of overlapping significance, this book features two comprehensive treatises of enzymes involved in meiotic recombination, as well as the historical conceptualization of meiotic phenomena from genetical experiments. More specifically, these mechanisms are addressed in yeasts as unicellular model eukaryotes. Furthermore, evolutionary subjects related to meiosis are treated."
This is an in-depth examination of circadian biology, presented by leading researchers in the field. Methods for analysis of rhythmic readouts in select model organisms are included. This cutting-edge collection of protocols is adaptable for research at every level, and represents the huge strides that chronobiologists have made over the past two decades. Circadian biologists at all research levels will realize tremendous benefit from this extraordinary collection.
This title develops from the 24th Stadler symposium. It explores the general theme "GENOME EXPLOITATION: Data Mining the Genomes." The idea behind the theme is to discuss and illustrate how scientists are going to characterize and make use of the massive amount of information being accumulated about plant and animal genomes. The book presents a state-of-the-art picture on mining the Genome databases. Its chapters are authored by key stars in the field. |
![]() ![]() You may like...
Binge Britain - Alcohol and the national…
Martin Plant, Moira Plant
Hardcover
R4,249
Discovery Miles 42 490
Nameless Persons - Legal Discrimination…
Kevin E. Early, Martha T. Zingo
Hardcover
R2,329
Discovery Miles 23 290
The Resurrection - An Interdisciplinary…
Stephen T. Davis, Daniel Kendall, …
Hardcover
R2,573
Discovery Miles 25 730
|