![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
This book computes the first- and second-order derivative matrices of skew ray and optical path length, while also providing an important mathematical tool for automatic optical design. This book consists of three parts. Part One reviews the basic theories of skew-ray tracing, paraxial optics and primary aberrations - essential reading that lays the foundation for the modeling work presented in the rest of this book. Part Two derives the Jacobian matrices of a ray and its optical path length. Although this issue is also addressed in other publications, they generally fail to consider all of the variables of a non-axially symmetrical system. The modeling work thus provides a more robust framework for the analysis and design of non-axially symmetrical systems such as prisms and head-up displays. Lastly, Part Three proposes a computational scheme for deriving the Hessian matrices of a ray and its optical path length, offering an effective means of determining an appropriate search direction when tuning the system variables in the system design process.
This book covers current technological innovations and applications in image processing, introducing analysis techniques and describing applications in remote sensing and manufacturing, among others. The authors include new concepts of color space transformation like color interpolation, among others. Also, the concept of Shearlet Transform and Wavelet Transform and their implementation are discussed. The authors include a perspective about concepts and techniques of remote sensing like image mining, geographical, and agricultural resources. The book also includes several applications of human organ biomedical image analysis. In addition, the principle of moving object detection and tracking - including recent trends in moving vehicles and ship detection - is described. Presents developments of current research in various areas of image processing; Includes applications of image processing in remote sensing, astronomy, and manufacturing; Pertains to researchers, academics, students, and practitioners in image processing.
This book offers a holistic framework to study behavior and evolutionary dynamics in large-scale, decentralized, and heterogeneous crowd networks. In the emerging crowd cyber-ecosystems, millions of deeply connected individuals, smart devices, government agencies, and enterprises actively interact with each other and influence each other's decisions. It is crucial to understand such intelligent entities' behaviors and to study their strategic interactions in order to provide important guidelines on the design of reliable networks capable of predicting and preventing detrimental events with negative impacts on our society and economy. This book reviews the fundamental methodologies to study user interactions and evolutionary dynamics in crowd networks and discusses recent advances in this emerging interdisciplinary research field. Using information diffusion over social networks as an example, it presents a thorough investigation of the impact of user behavior on the network evolution process and demonstrates how this can help improve network performance. Intended for graduate students and researchers from various disciplines, including but not limited to, data science, networking, signal processing, complex systems, and economics, the book encourages researchers in related research fields to explore the many untouched areas in this domain, and ultimately to design crowd networks with efficient, effective, and reliable services.
This book presents current trends that are dominating technology and society, including privacy, high performance computing in the cloud, networking and IoT, and bioinformatics. By providing chapters detailing accessible descriptions of the research frontiers in each of these domains, the reader is provided with a unique understanding of what is currently feasible. Readers are also given a vision of what these technologies can be expected to produce in the near future. The topics are covered comprehensively by experts in respective areas. Each section includes an overview that puts the research topics in perspective and integrates the sections into an overview of how technology is evolving. The book represents the proceedings of the International Symposium on Sensor Networks, Systems and Security, August 31 - September 2, 2017, Lakeland Florida.
This book collects selected papers from the 6th Conference on Signal and Information Processing, Networking and Computers, held in Guiyang, China, on August 13 - 16, 2019. Focusing on the latest advances in information theory, communication systems, computer science, aerospace technologies, big data and other related technologies, it offers a valuable resource for researchers and industrial practitioners alike.
This book organizes principles and methods of signal processing and machine learning into the framework of coherence. The book contains a wealth of classical and modern methods of inference, some reported here for the first time. General results are applied to problems in communications, cognitive radio, passive and active radar and sonar, multi-sensor array processing, spectrum analysis, hyperspectral imaging, subspace clustering, and related. The reader will find new results for model fitting; for dimension reduction in models and ambient spaces; for detection, estimation, and space-time series analysis; for subspace averaging; and for uncertainty quantification. Throughout, the transformation invariances of statistics are clarified, geometries are illuminated, and null distributions are given where tractable. Stochastic representations are emphasized, as these are central to Monte Carlo simulations. The appendices contain a comprehensive account of matrix theory, the SVD, the multivariate normal distribution, and many of the important distributions for coherence statistics. The book begins with a review of classical results in the physical and engineering sciences where coherence plays a fundamental role. Then least squares theory and the theory of minimum mean-squared error estimation are developed, with special attention paid to statistics that may be interpreted as coherence statistics. A chapter on classical hypothesis tests for covariance structure introduces the next three chapters on matched and adaptive subspace detectors. These detectors are derived from likelihood reasoning, but it is their geometries and invariances that qualify them as coherence statistics. A chapter on independence testing in space-time data sets leads to a definition of broadband coherence, and contains novel applications to cognitive radio and the analysis of cyclostationarity. The chapter on subspace averaging reviews basic results and derives an order-fitting rule for determining the dimension of an average subspace. These results are used to enumerate sources of acoustic and electromagnetic radiation and to cluster subspaces into similarity classes. The chapter on performance bounds and uncertainty quantification emphasizes the geometry of the Cramer-Rao bound and its related information geometry.
This book describes in detail different types of vibration signals and the signal processing methods, including signal resampling and signal envelope, used for condition monitoring of drivetrains. A special emphasis is placed on wind turbines and on the fact that they work in highly varying operational conditions. The core of the book is devoted to cutting-edge methods used to validate and process vibration data in these conditions. Key case studies, where advanced signal processing methods are used to detect failures of gearboxes and bearings of wind turbines, are described and discussed in detail. Vibration sensors, SCADA (Supervisory Control and Data Acquisition), portable data analyzers and online condition monitoring systems, are also covered. This book offers a timely guide to both researchers and professionals working with wind turbines (but also other machines), and to graduate students willing to extend their knowledge in the field of vibration analysis.
Metal Nanostructures for Photonics presents updates on the development of materials with enhanced optical properties and the demand for novel metal-dielectric nanocomposites and nanostructured materials. The book covers various aspects of metal-dielectric nanocomposites and metallic-nanostructures and illustrates techniques used to prepare and characterize materials and their physical properties. It focuses on three main sections, nanocomposites with enhanced luminescence properties due to contributions of metal nanoparticles hosted in photonic glasses, near and far-field optical phenomena, and the optical response of single nanoparticles that reveal quantum phenomena in the nanoscale, amongst other topics. This book will serve as an important research reference for materials scientists who want to learn more on how a range of metallic nanostructured materials are used in photonics.
This book presents selected papers from the 2021 International Conference on Electrical and Electronics Engineering (ICEEE 2020), held on January 2-3, 2021. The book focuses on the current developments in various fields of electrical and electronics engineering, such as power generation, transmission and distribution; renewable energy sources and technologies; power electronics and applications; robotics; artificial intelligence and IoT; control, automation and instrumentation; electronics devices, circuits and systems; wireless and optical communication; RF and microwaves; VLSI; and signal processing. The book is a valuable resource for academics and industry professionals alike.
The book focuses on fractal control and applications in various fields. Fractal phenomena occur in nonlinear models, and since the behaviors depicted by fractals need to be controlled in practical applications, an understanding of fractal control is necessary. This book introduces readers to Julia set fractals and Mandelbrot set fractals in a range of models, such as physical systems, biological systems and SIRS models, and discusses controllers designed to control these fractals. Further, it demonstrates how the fractal dimension can be calculated in order to describe the complexity of various systems.Offering a comprehensive and systematic overview of the practical issues in fractal control, this book is a valuable resource for readers interested in practical solutions in fractal control. It will also appeal to researchers, engineers, and graduate students in fields of fractal control and applications, as well as chaos control and applications.
This book gathers selected papers presented at 3rd International Conference on Communication and Computational Technologies (ICCCT 2021), jointly organized in virtual format by Rajasthan Institute of Engineering and Technology, Jaipur and Rajasthan Technical University Kota in association with Soft Computing Research Society, during 27-28 February 2021. The volume is a collection of state-of-the-art research work in the cutting-edge technologies related to communication and intelligent systems. The topics covered are algorithms and applications of intelligent systems, informatics and applications, and communication and control systems.
This text discusses the fundamental physical concepts involved in understanding charged particle and photon beams. The presentation is unified; particle dynamics in linear and circular accelerators are discussed in common language, as are the evolution of particle and laser beams. This book is aimed at the advanced undergraduate student, and contains numerous illustrative exercises.
Some of the most exciting developments in the optics and processing of nanostructured materials can be found in applied science and engineering. The topics covered in this book are at the cutting edge of research.
This book presents an approach to postmortem human identification using dental image processing based on dental features and characteristics, and provides information on various identification systems based on dental features using image processing operations. The book also provides information on a novel human identification approach that uses Infinite Symmetric Exponential Filter (ISEF) based edge detection and contouring algorithms. Provides complete details on dental imaging; Discusses the important features of a human identification approach and presents a brief review on DICOM standard for dental imaging; Presents human identification approach based on dental features.
The book presents selected papers at the 8th Conference on Sound and Music Technology (CSMT) held in November 2020, at Taiyuan, Shanxi, China. CSMT is a multidisciplinary conference focusing on audio processing and understanding with bias on music and acoustic signals. The primary aim of the conference is to promote the collaboration between art society and technical society in China. In this proceeding, the paper included covers a wide range topic from speech, signal processing, music understanding, machine learning and signal processing for advanced medical diagnosis and treatment applications; which demonstrates the target of CSMT merging arts and science research together.its content caters to scholars, researchers, engineers, artists, and education practitioners not only from academia but also industry, who are interested in audio/acoustics analysis signal processing, music, sound, and artificial intelligence (AI).
This book describes how a key signal/image processing algorithm - that of the fast Hartley transform (FHT) or, via a simple conversion routine between their outputs, of the real-data version of the ubiquitous fast Fourier transform (FFT) - might best be formulated to facilitate computationally-efficient solutions. The author discusses this for both 1-D (such as required, for example, for the spectrum analysis of audio signals) and m-D (such as required, for example, for the compression of noisy 2-D images or the watermarking of 3-D video signals) cases, but requiring few computing resources (i.e. low arithmetic/memory/power requirements, etc.). This is particularly relevant for those application areas, such as mobile communications, where the available silicon resources (as well as the battery-life) are expected to be limited. The aim of this monograph, where silicon-based computing technology and a resource-constrained environment is assumed and the data is real-valued in nature, has thus been to seek solutions that best match the actual problem needing to be solved.
In this book, computational optical phase imaging techniques are presented along with Matlab codes that allow the reader to run their own simulations and gain a thorough understanding of the current state-of-the-art. The book focuses on modern applications of computational optical phase imaging in engineering measurements and biomedical imaging. Additionally, it discusses the future of computational optical phase imaging, especially in terms of system miniaturization and deep learning-based phase retrieval.
The book provides a comprehensive exposition of all major topics in digital signal processing (DSP). With numerous illustrative examples for easy understanding of the topics, it also includes MATLAB-based examples with codes in order to encourage the readers to become more confident of the fundamentals and to gain insights into DSP. Further, it presents real-world signal processing design problems using MATLAB and programmable DSP processors. In addition to problems that require analytical solutions, it discusses problems that require solutions using MATLAB at the end of each chapter. Divided into 13 chapters, it addresses many emerging topics, which are not typically found in advanced texts on DSP. It includes a chapter on adaptive digital filters used in the signal processing problems for faster acceptable results in the presence of changing environments and changing system requirements. Moreover, it offers an overview of wavelets, enabling readers to easily understand the basics and applications of this powerful mathematical tool for signal and image processing. The final chapter explores DSP processors, which is an area of growing interest for researchers. A valuable resource for undergraduate and graduate students, it can also be used for self-study by researchers, practicing engineers and scientists in electronics, communications, and computer engineering as well as for teaching one- to two-semester courses.
This book provides information about wireless systems and WIMAX modeling. The authors provide various techniques for the WiMAX systems such as antenna diversity and Alamouti coding. The performance of these systems is tested using various types of data and the results of systems are presented and discussed. Additional topics include WiMAX simulation using diversity techniques and real time WiMAX system modeling. The book pertains to researchers, academics, students, and professionals. Provides information about wireless system modeling and WiMAX systems; Presents WiMAX system modeling using antenna diversity techniques and the Alamouti coding scheme; Includes real time WiMAX system modeling for speech signal and digital images.
Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. "Rough-Fuzzy Pattern Recognition" examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A Mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text--covering the latest findings as well as directions for future research--is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.
The investigation of light-matter interactions in materials, especially those on the nanoscale, represents perhaps the most promising avenue for scientific progress in the fields of photonics and plasmonics. This book examines a variety of topics, starting from fundamental principles, leading to the current state of the art research. For example, this volume includes a chapter on the sensing of biological molecules with optical resonators (microspheres) combined with plasmonic systems, where the response this system are described in a fundamental and elegant manner using coupled mode theory. Symmetry plays a major role in the book. One chapter on time reversal symmetry in electromagnetic theory describes how to control the properties of light (e.g. scattering and directionality of the flow of light) in materials with certain topological invariants. Another chapter where symmetry is prominent reformulates, using a gentle and pedagogical approach, Maxwell's Equations into a new set of fields that reveal a "handedness" symmetry in electromagnetic theory, which can be applied to photonic systems in, for example, the sensing of chiral molecules and understanding the conditions for zero reflection. Also, for students and researchers starting in the field of nanoplasmonics, the book includes a tutorial on the finite element time domain simulation of nanoplasmonic systems. Other topics include photonic systems for quantum computing, nanoplasmonics, and optical properties of nano and bulk materials. The authors take a pedagogical approach to their topic, making the book an excellent reference for graduate students and scientists starting in the fields of photonics or plasmonics.
Defects in Advanced Electronic Materials and Novel Low Dimensional Structures provides a comprehensive review on the recent progress in solving defect issues and deliberate defect engineering in novel material systems. It begins with an overview of point defects in ZnO and group-III nitrides, including irradiation-induced defects, and then look at defects in one and two-dimensional materials, including carbon nanotubes and graphene. Next, it examines the ways that defects can expand the potential applications of semiconductors, such as energy upconversion and quantum processing. The book concludes with a look at the latest advances in theory. While defect physics is extensively reviewed for conventional bulk semiconductors, the same is far from being true for novel material systems, such as low-dimensional 1D and 0D nanostructures and 2D monolayers. This book fills that necessary gap.
This book describes the PREMISS system, which enables readers to overcome the limitations of state-of-the-art battery-less wireless sensors in size, cost, robustness and range, with a system concept for a 60 GHz wireless sensor system with monolithic sensors. The authors demonstrate a system in which the wireless sensors consist of wireless power receiving, sensing and communication functions in a single chip, without external components, avoiding costly IC-interfaces that are sensitive to mechanical and thermal stress.
The book is a collection of high-quality peer-reviewed research papers presented in the first International Conference on Signal, Networks, Computing, and Systems (ICSNCS 2016) held at Jawaharlal Nehru University, New Delhi, India during February 25-27, 2016. The book is organized in to two volumes and primarily focuses on theory and applications in the broad areas of communication technology, computer science and information security. The book aims to bring together the latest scientific research works of academic scientists, professors, research scholars and students in the areas of signal, networks, computing and systems detailing the practical challenges encountered and the solutions adopted. |
You may like...
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
Carbon Quantum Dots for Sustainable…
Sudip Kumar Batabyal, Basudev Pradhan, …
Paperback
R4,936
Discovery Miles 49 360
Infrared Thermography in the Evaluation…
Carosena Meola, Simone Boccardi, …
Hardcover
R3,497
Discovery Miles 34 970
|