![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 2nd International Summer School "Nanotechnology: From Fundamental Research to Innovations" and International Research and Practice Conference "Nanotechnology and Nanomaterials", NANO-2013, which were held in Bukovel, Ukraine on August 25-September 1, 2013. These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.
The book features selected high-quality papers presented at International Conference on Electrical and Electronics Engineering (ICEEE 2022), jointly organized by University of Malaya and Bharath Institute of Higher Education and Research India during January 8-9, 2022, at NCR New Delhi, India. The book focuses on current development in the fields of electrical and electronics engineering. The book covers electrical engineering topics-power and energy including renewable energy, power electronics and applications, control, and automation and instrumentation-and covers the areas of robotics, artificial intelligence and IoT, electronics devices, circuits and systems, wireless and optical communication, RF and microwaves, VLSI, and signal processing. The book is beneficial for readers from both academia and industry.
This book presents mathematical models that arise in current photographic science. The book contains seventeen chapters, each dealing with one area of photographic science, and a final chapter containing exercises. Each chapter, except the two introductory chapters, begin with general background information at a level understandable by graduate and undergraduate students. It then proceeds to develop a mathematical model, using mathematical tools such as ordinary differential equations, partial differential equations, and stochastic processes. Next, some mathematical results are mentioned, often providing a partial solution to problems raised by the model. Finally, most chapters include open problems. The last chapter of the book contains "Modeling and Applied Mathematics" exercises based on the material presented in the earlier chapters. These exercises are intended primarily for graduate students and advanced undergraduates.
Optomechatronics, as a fusion of optical and mechatronic engineering, have played a key role in developing innovative products such as high precision instruments, defence, photonic systems, measurements, diagnostics, semiconductors, and so on. And optomechatronics technologies have greatly contributed to the state of the art industries in optics design, manufacturing, optical imaging, metrology, and other applications. This book covers a multitude of optomechatronics advantages and solutions. It includes 20 contributions featuring laser and fiber optics, nitride semiconductors, LIDAR technology, machine vision, optical imaging, micro optoelectro mechanical systems, optical metrology, optical-based sensors and actuators, optomechatronics for microscopes, optical pattern and fiber, optomechatronics for bio-medical applications, optomechatronics for manufacturing applications, robotics for micro and nano scales, and other applications. As revised and extended versions, the contributed articles are selected from the proceedings of the 2013 International Symposium on Optomechatronic Technologies held on Oct 28-30, 2013 in Jeju Island, Korea.
Laser Processing and Chemistry gives an overview of the
fundamentals and applications of laser-matter interactions, in
particular with regard to laser material processing. Special
attention is given to laser-induced physical and chemical processes
at gas-solid, liquid-solid, and solid-solid interfaces. Starting
with the background physics, the book proceeds to examine
applications of laser techniques in micro-machining, and the
patterning, coating, and modification of material surfaces.
Thisfourth edition has been revised and enlarged to cover new
topics such as 3D microfabrication, advances in nanotechnology,
ultrafast laser technology and laser chemical processing (LCP).
Still Image Compression on Parallel Computer Architectures investigates the application of parallel-processing techniques to digital image compression. Digital image compression is used to reduce the number of bits required to store an image in computer memory and/or transmit it over a communication link. Over the past decade advancements in technology have spawned many applications of digital imaging, such as photo videotex, desktop publishing, graphics arts, color facsimile, newspaper wire phototransmission and medical imaging. For many other contemporary applications, such as distributed multimedia systems, rapid transmission of images is necessary. Dollar cost as well as time cost of transmission and storage tend to be directly proportional to the volume of data. Therefore, application of digital image compression techniques becomes necessary to minimize costs. A number of digital image compression algorithms have been developed and standardized. With the success of these algorithms, research effort is now directed towards improving implementation techniques. The Joint Photographic Experts Group (JPEG) and Motion Photographic Experts Group(MPEG) are international organizations which have developed digital image compression standards. Hardware (VLSI chips) which implement the JPEG image compression algorithm are available. Such hardware is specific to image compression only and cannot be used for other image processing applications. A flexible means of implementing digital image compression algorithms is still required. An obvious method of processing different imaging applications on general purpose hardware platforms is to develop software implementations. JPEG uses an 8 A- 8 blockof image samples as the basic element for compression. These blocks are processed sequentially. There is always the possibility of having similar blocks in a given image. If similar blocks in an image are located, then repeated compression of these blocks is not necessary. By locating similar blocks in the image, the speed of compression can be increased and the size of the compressed image can be reduced. Based on this concept an enhancement to the JPEG algorithm is proposed, called Bock Comparator Technique (BCT). Still Image Compression on Parallel Computer Architectures is designed for advanced students and practitioners of computer science. This comprehensive reference provides a foundation for understanding digital image compression techniques and parallel computer architectures.
This timely book presents innovative technologies for use in the diagnosis, monitoring, and treatment of brain disease. These technologies offer exciting possibilities in the medical field owing to their low-cost, portability and safety. The authors address cerebrovascular diseases such as stroke, ischemia, haemorrhage, and vasospasm, these diseases having an ever-increasing societal relevance due to the global ageing population. The authors describe the potential of novel techniques such as microwave imaging and present innovative modalities for treatment of brain tumours using electromagnetic fields and nano-composites, as well as for monitoring brain temperature during surgery. Finally, Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy addresses the perspectives which arise from multi-modal multi-spectral EM modalities, which make a synergic use of the different portions of the electromagnetic spectrum. This text will be of interest to readers from various different areas, given the fundamental interdisciplinarity of the subject matter. This includes researchers or practitioners in the field of electrical engineering, applied physicists, and applied mathematicians working on imaging applications for biomedical and electromagnetic technologies. Neurologists and radiologists may also find this book of interest, as may graduate students in these areas.
This book presents how to apply recent machine learning (deep learning) methods for the task of speech quality prediction. The author shows how recent advancements in machine learning can be leveraged for the task of speech quality prediction and provides an in-depth analysis of the suitability of different deep learning architectures for this task. The author then shows how the resulting model outperforms traditional speech quality models and provides additional information about the cause of a quality impairment through the prediction of the speech quality dimensions of noisiness, coloration, discontinuity, and loudness.
Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available. This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method. Dr. Feng Li is a scientific researcher at Cornell University.
Recent advances in semiconductor technology have made it possible to fabricate microcavity structures in which both photon fields and electron-hole pairs (or excitons) are confined in a small volume comparable to their wavelength. The radiative properties of the electron-hole pairs and excitons are modified owing to the drastic change in the structure of the electromagnetic-field modes. This book is the first to give a comprehensive account of the theory of semiconductor cavity quantum electrodynamics for such systems in the weak-coupling and strong-coupling regimes. The important concepts are presented, together with relevant, recent experimental results.
This book establishes a unified framework for dealing with typical engineering complications arising in modern, complex, large-scale networks such as parameter uncertainties, missing measurement and cyber-attack. Distributed Filtering, Control and Synchronization is a timely reflection on methods designed to handle a series of control and signal-processing issues in modern industrial engineering practice in areas like power grids and environmental monitoring. It exploits the latest techniques to handle the emerging mathematical and computational challenges arising from, among other things, the dynamic topologies of distributed systems and in the context of sensor networks and multi-agent systems. These techniques include recursive linear matrix inequalities, local-performance and stochastic analyses and techniques based on matrix theory. Readers interested in the theory and application of control and signal processing will find much to interest them in the new models and methods presented in this book. Academic researchers can find ideas for developing their own research, graduate and advanced undergraduate students will be made aware of the state of the art, and practicing engineers will find methods for addressing practical difficulties besetting modern networked systems
1.1 Digital Optics as a Subject Improvement of the quality of optical devices has always been the central task of experimental optics. In modern terms, improvements in sensitivity and resolution have equated higher quality with greater informational throughput. For most of today's applications, optics and electronics have, in essence, solved the problem of generating high quality pictures with great informational ca pacity. Effective use of the enormous amount of information contained in the images necessitates processing pictures, holograms, and interferograms. The manner in which information might be extracted from optical entities has be come a topic of current interest. The informational aspects of optical signals and systems might serve as a basis for attacking this question by making use of information theory and signal communication theory, and by enlisting modern tools and methods for data processing (the most important and powerful of which are those of digi tal computation). Exploiting modern advances in electronics has allowed new wavelength ranges and new kinds of radiation to be used in optics. Comput ers have extended our knowledge of the informational essence of radiation. Thus, computerized optical devices enhance not only the optical capabilities of sight, but also its analytical capabilities as well, thus opening qualitatively new horizons to all the areas in which optical devices have found application."
This book presents a unified view of image motion analysis under the variational framework. Variational methods, rooted in physics and mechanics, but appearing in many other domains, such as statistics, control, and computer vision, address a problem from an optimization standpoint, i.e., they formulate it as the optimization of an objective function or functional. The methods of image motion analysis described in this book use the calculus of variations to minimize (or maximize) an objective functional which transcribes all of the constraints that characterize the desired motion variables. The book addresses the four core subjects of motion analysis: Motion estimation, detection, tracking, and three-dimensional interpretation. Each topic is covered in a dedicated chapter. The presentation is prefaced by an introductory chapter which discusses the purpose of motion analysis. Further, a chapter is included which gives the basic tools and formulae related to curvature, Euler Lagrange equations, unconstrained descent optimization, and level sets, that the variational image motion processing methods use repeatedly in the book.
This book includes original, peer-reviewed research papers from the 12th China Academic Conference on Printing and Packaging (CACPP 2021), held in Beijing, China on November 12-14, 2021. The proceedings cover the recent findings in color science and technology, image processing technology, digital media technology, mechanical and electronic engineering and numerical control, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book is of interest to university researchers, R&D engineers and graduate students in the field of graphic arts, packaging, color science, image science, material science, computer science, digital media, network technology, and smart manufacturing technology.
Environmental and chemical sensors in optical fiber sensor technology The nature of the environment in which we live and work, and the precarious state of many aspects of the natural environment, has been a major lesson for scientists over the last few decades. Public awareness of the issues involved is high, and often coupled with a scepticism of the ability of the scientist and engineer to provide an adequate, or even rapid solution to the preservation of the environment before further damage is done, and to achieve this with a mini mum of expenditure. Monitoring of the various aspects of the environment, whether it be external or internal to ourselves and involving chemical, physical or biomedical parameters is an essential process for the well-being of mankind and of the individual. Legis lative requirements set new standards for measurement and control all around us, which must be met by the most appropriate of the technologies available, commensurate with the costs involved. Optical fiber sensor technology has a major part to play in this process, both to complement existing technologies and to promote new solutions to difficult measurement issues. The developments in new sources and detectors covering wider ranges of the electromagnetic spectrum, with higher sensitivity, allow the use of techniques that some time ago would have been considered inappropriate or lacking in sufficient sensitivity."
This book highlights recent technological advances, reviews and applications in the field of cardiovascular engineering, including medical imaging, signal processing and informatics, biomechanics, as well as biomaterials. It discusses the use of biomaterials and 3D printing for tissue-engineered heart valves, and also presents a unique combination of engineering and clinical approaches to solve cardiovascular problems. This book is a valuable resource for students, lecturers and researchers in the field of biomedical engineering.
Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.
This book covers several aspects of the operational amplifier and includes theoretical explanations with simplified expressions and derivations. The book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in electronics and communication engineering. The topics included are DC amplifier, AC/DC analysis of DC amplifier, relevant derivations, a block diagram of the operational amplifier, positive and negative feedbacks, amplitude modulator, current to voltage and voltage to current converters, DAC and ADC, integrator, differentiator, active filters, comparators, sinusoidal and non-sinusoidal waveform generators, phase lock loop (PLL), etc. This book contains two parts-sections A and B. Section A includes theory, methodology, circuit design and derivations. Section B explains the design and study of experiments for laboratory practice. Laboratory experiments enable students to perform a practical activity that demonstrates applications of the operational amplifier. A simplified description of the circuits, working principle and practical approach towards understanding the concept is a unique feature of this book. Simple methods and easy steps of the derivation and lucid presentation are some other traits of this book for readers that do not have any background information about electronics. This book is student-centric towards the basics of the operational amplifier and its applications. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate electronics and communication engineering courses.
This book presents the proceedings of the 31st International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), held in Klagenfurt, Austria, June 8-10, 2022. It gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: novel designs and applications of robotic systems, intelligent cooperating and service robots, advanced robot control, human-robot interfaces, robot vision systems, mobile robots, humanoid and walking robots, bio-inspired and swarm robotic systems, aerial, underwater and spatial robots, robots for ambient assisted living, medical robots and bionic prostheses, cognitive robots, cloud robotics, ethical and social issues in robotics, etc. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments. Chapter "The Use of Robots in Aquatic Biomonitoring with Special Focus on Biohybrid Entities" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The book highlights recent developments in human biometrics, covering a wide range of methods based on biological signals, image processing, and measurements of human characteristics such as fingerprints and iris or medical characteristics. Human Biometrics is becoming increasingly crucial in forensics security and medicine. They provide a solid basis for identifying individuals based on unique physical characteristics or diseases based on characteristic biomedical measurements. As such, the book offers an essential reference guide about biometry methods for students, engineers, designers, and technicians.
This thesis describes the first demonstration of a cooperative optical non-linearity based on Rydberg excitation. Whereas in conventional non-linear optics the non-linearity arises directly from the interaction between light and matter, in a cooperative process it is mediated by dipole-dipole interactions between light-induced excitations. For excitation to high Rydberg states where the electron is only weakly bound, the dipole-dipole interactions are extremely large and long range, enabling an enormous enhancement of the non-linear effect. Consequently, cooperative non-linear optics using Rydberg excitations opens a new era for quantum optics enabling large single photon non-linearity to be accessible in free space for the first time. The thesis describes the theoretical underpinnings of the non- linear effect, the pioneering experimental results and implications for experiments in the single photon regime.
This book presents the latest advances in remote-sensing and geographic information systems and applications. It is divided into four parts, focusing on Airborne Light Detection and Ranging (LiDAR) and Optical Measurements of Forests; Individual Tree Modelling; Landscape Scene Modelling; and Forest Eco-system Modelling. Given the scope of its coverage, the book offers a valuable resource for students, researchers, practitioners, and educators interested in remote sensing and geographic information systems and applications.
Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data. Challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, pattern classification and target recognition, visualization of high dimensional imagery. |
![]() ![]() You may like...
An Introduction to Clustering with R
Paolo Giordani, Maria Brigida Ferraro, …
Hardcover
R4,252
Discovery Miles 42 520
Handbook of Arsenic Toxicology
Swaran Jeet Singh Flora
Hardcover
|