![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
This book includes a selection of peer-reviewed papers presented at the 10th China Academic Conference on Printing and Packaging, which was held in Xi'an, China, on November 14-17, 2019. The conference was jointly organized by the China Academy of Printing Technology, Beijing Institute of Graphic Communication, and Shaanxi University of Science and Technology. With 9 keynote talks and 118 papers on graphic communication and packaging technologies, the conference attracted more than 300 scientists. The proceedings cover the latest findings in a broad range of areas, including color science and technology, image processing technology, digital media technology, mechanical and electronic engineering, Information Engineering and Artificial Intelligence Technology, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book appeals to university researchers, R&D engineers and graduate students in the graphic arts, packaging, color science, image science, material science, computer science, digital media, and network technology.
This book proposes a general methodology to introduce Global Navigation Satellite System (GNSS) integrity, starting from a rigorous mathematical description of the problem. It highlights the major issues that designers need to resolve during the development of GNSS-based systems requiring a certain level of confidence on the position estimates. Although it follows a general approach, the final chapters focus on the application of GNSS integrity to rail transportation, as an example. By describing the main requirements in the context of train position function, one of which is the safe function of any train control system, it shows the critical issues associated with the concept of safe position integrity. In particular, one case study clarifies the key differences between the avionic domain and the railway domain related to the application of GNSS technologies, and identifies a number of railway-signaling hazards linked with the use of such technology. Furthermore, it describes various railway-signaling techniques to mitigate such hazards to prepare readers for the future evolution of train control systems, also based on the GNSS technology. This unique book offers a valuable reference guide for engineers and researchers in the fields of satellite navigation and rail transportation.
Based on the design theory and development experience of Beidou navigation satellite system (BDS), this book highlights the space segment and the related satellite technologies as well as satellite-ground integration design from the perspective of engineering. The satellite navigation technology in this book is divided into uplink and reception technology, broadcasting link technology, inter-satellite link technology, time-frequency system technology, navigation signal generation and assessment technology, navigation information management technology, autonomous operation technology of navigation satellite. In closing, the book introduces readers to the technological development status and trend of BDS and other GNSS, and propose the technologies of future development. Unlike most current books on this topic, which largely concentrate on principles, receiver design or applications, the book also features substantial information on the role of satellite system in the GNSS and the process of signal information flow, and each chapter not only studies on the theoretical function and main technologies, but also focuses on engineering development. Accordingly, readers will gain not only a better understanding of navigation satellite systems as a whole, but also of their main components and key technologies.
This book computes the first- and second-order derivative matrices of skew ray and optical path length, while also providing an important mathematical tool for automatic optical design. This book consists of three parts. Part One reviews the basic theories of skew-ray tracing, paraxial optics and primary aberrations - essential reading that lays the foundation for the modeling work presented in the rest of this book. Part Two derives the Jacobian matrices of a ray and its optical path length. Although this issue is also addressed in other publications, they generally fail to consider all of the variables of a non-axially symmetrical system. The modeling work thus provides a more robust framework for the analysis and design of non-axially symmetrical systems such as prisms and head-up displays. Lastly, Part Three proposes a computational scheme for deriving the Hessian matrices of a ray and its optical path length, offering an effective means of determining an appropriate search direction when tuning the system variables in the system design process.
Advances in photonics and nanotechnology have the potential to revolutionize humanity's ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell's equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell's equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.
This book presents current trends that are dominating technology and society, including privacy, high performance computing in the cloud, networking and IoT, and bioinformatics. By providing chapters detailing accessible descriptions of the research frontiers in each of these domains, the reader is provided with a unique understanding of what is currently feasible. Readers are also given a vision of what these technologies can be expected to produce in the near future. The topics are covered comprehensively by experts in respective areas. Each section includes an overview that puts the research topics in perspective and integrates the sections into an overview of how technology is evolving. The book represents the proceedings of the International Symposium on Sensor Networks, Systems and Security, August 31 - September 2, 2017, Lakeland Florida.
This book contains detailed descriptions and associated discussions regarding different generation, detection and signal processing techniques for the electrical and optical signals within the THz frequency spectrum (0.3-10 THz). It includes detailed reviews of some recently developed electronic and photonic devices for generating and detecting THz waves, potential materials for implementing THz passive circuits, some newly developed systems and methods associated with THz wireless communication, THz antennas and some cutting-edge techniques associated with the THz signal and image processing. The book especially focuses on the recent advancements and several research issues related to THz sources, detectors and THz signal and image processing techniques; it also discusses theoretical, experimental, established and validated empirical works on these topics. The book caters to a very wide range of readers from basic science to technological experts as well as students.
This book includes best-selected, high-quality research papers presented at Second International Conference on Biologically Inspired Techniques in Many Criteria Decision Making (BITMDM 2021) organized by Department of Information & Communication Technology, Fakir Mohan University, Balasore, Odisha, India, during December 20-21, 2021. This proceeding presents the recent advances in techniques which are biologically inspired and their usage in the field of many criteria decision making. The topics covered are biologically inspired algorithms, nature-inspired algorithms, multi-criteria optimization, multi-criteria decision making, data mining, big-data analysis, cloud computing, IOT, machine learning and soft computing, smart technologies, crypt-analysis, cognitive informatics, computational intelligence, artificial intelligence and machine learning, data management exploration and mining, computational intelligence, and signal and image processing.
A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices?optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.
This textbook grew out of notes for the ECE143 Programming for Data Analysis class that the author has been teaching at University of California, San Diego, which is a requirement for both graduate and undergraduate degrees in Machine Learning and Data Science. This book is ideal for readers with some Python programming experience. The book covers key language concepts that must be understood to program effectively, especially for data analysis applications. Certain low-level language features are discussed in detail, especially Python memory management and data structures. Using Python effectively means taking advantage of its vast ecosystem. The book discusses Python package management and how to use third-party modules as well as how to structure your own Python modules. The section on object-oriented programming explains features of the language that facilitate common programming patterns. After developing the key Python language features, the book moves on to third-party modules that are foundational for effective data analysis, starting with Numpy. The book develops key Numpy concepts and discusses internal Numpy array data structures and memory usage. Then, the author moves onto Pandas and details its many features for data processing and alignment. Because strong visualizations are important for communicating data analysis, key modules such as Matplotlib are developed in detail, along with web-based options such as Bokeh, Holoviews, Altair, and Plotly. The text is sprinkled with many tricks-of-the-trade that help avoid common pitfalls. The author explains the internal logic embodied in the Python language so that readers can get into the Python mindset and make better design choices in their codes, which is especially helpful for newcomers to both Python and data analysis. To get the most out of this book, open a Python interpreter and type along with the many code samples.
This hands-on, laboratory driven textbook helps readers understand principles of digital signal processing (DSP) and basics of software-based digital communication, particularly software-defined networks (SDN) and software-defined radio (SDR). In the book only the most important concepts are presented. Each book chapter is an introduction to computer laboratory and is accompanied by complete laboratory exercises and ready-to-go Matlab programs with figures and comments (available at the book webpage and running also in GNU Octave 5.2 with free software packages), showing all or most details of relevant algorithms. Students are tasked to understand programs, modify them, and apply presented concepts to recorded real RF signal or simulated received signals, with modelled transmission condition and hardware imperfections. Teaching is done by showing examples and their modifications to different real-world telecommunication-like applications. The book consists of three parts: introduction to DSP (spectral analysis and digital filtering), introduction to DSP advanced topics (multi-rate, adaptive, model-based and multimedia - speech, audio, video - signal analysis and processing) and introduction to software-defined modern telecommunication systems (SDR technology, analog and digital modulations, single- and multi-carrier systems, channel estimation and correction as well as synchronization issues). Many real signals are processed in the book, in the first part - mainly speech and audio, while in the second part - mainly RF recordings taken from RTL-SDR USB stick and ADALM-PLUTO module, for example captured IQ data of VOR avionics signal, classical FM radio with RDS, digital DAB/DAB+ radio and 4G-LTE digital telephony. Additionally, modelling and simulation of some transmission scenarios are tested in software in the book, in particular TETRA, ADSL and 5G signals. Provides an introduction to digital signal processing and software-based digital communication; Presents a transition from digital signal processing to software-defined telecommunication; Features a suite of pedagogical materials including a laboratory test-bed and computer exercises/experiments .
This book collects selected papers from the 6th Conference on Signal and Information Processing, Networking and Computers, held in Guiyang, China, on August 13 - 16, 2019. Focusing on the latest advances in information theory, communication systems, computer science, aerospace technologies, big data and other related technologies, it offers a valuable resource for researchers and industrial practitioners alike.
This book is volume III of a series of books on silicon photonics. It reports on the development of fully integrated systems where many different photonics component are integrated together to build complex circuits. This is the demonstration of the fully potentiality of silicon photonics. It contains a number of chapters written by engineers and scientists of the main companies, research centers and universities active in the field. It can be of use for all those persons interested to know the potentialities and the recent applications of silicon photonics both in microelectronics, telecommunication and consumer electronics market.
This book covers current technological innovations and applications in image processing, introducing analysis techniques and describing applications in remote sensing and manufacturing, among others. The authors include new concepts of color space transformation like color interpolation, among others. Also, the concept of Shearlet Transform and Wavelet Transform and their implementation are discussed. The authors include a perspective about concepts and techniques of remote sensing like image mining, geographical, and agricultural resources. The book also includes several applications of human organ biomedical image analysis. In addition, the principle of moving object detection and tracking - including recent trends in moving vehicles and ship detection - is described. Presents developments of current research in various areas of image processing; Includes applications of image processing in remote sensing, astronomy, and manufacturing; Pertains to researchers, academics, students, and practitioners in image processing.
The book focuses on fractal control and applications in various fields. Fractal phenomena occur in nonlinear models, and since the behaviors depicted by fractals need to be controlled in practical applications, an understanding of fractal control is necessary. This book introduces readers to Julia set fractals and Mandelbrot set fractals in a range of models, such as physical systems, biological systems and SIRS models, and discusses controllers designed to control these fractals. Further, it demonstrates how the fractal dimension can be calculated in order to describe the complexity of various systems.Offering a comprehensive and systematic overview of the practical issues in fractal control, this book is a valuable resource for readers interested in practical solutions in fractal control. It will also appeal to researchers, engineers, and graduate students in fields of fractal control and applications, as well as chaos control and applications.
This book offers a holistic framework to study behavior and evolutionary dynamics in large-scale, decentralized, and heterogeneous crowd networks. In the emerging crowd cyber-ecosystems, millions of deeply connected individuals, smart devices, government agencies, and enterprises actively interact with each other and influence each other's decisions. It is crucial to understand such intelligent entities' behaviors and to study their strategic interactions in order to provide important guidelines on the design of reliable networks capable of predicting and preventing detrimental events with negative impacts on our society and economy. This book reviews the fundamental methodologies to study user interactions and evolutionary dynamics in crowd networks and discusses recent advances in this emerging interdisciplinary research field. Using information diffusion over social networks as an example, it presents a thorough investigation of the impact of user behavior on the network evolution process and demonstrates how this can help improve network performance. Intended for graduate students and researchers from various disciplines, including but not limited to, data science, networking, signal processing, complex systems, and economics, the book encourages researchers in related research fields to explore the many untouched areas in this domain, and ultimately to design crowd networks with efficient, effective, and reliable services.
This reference blends the concepts of optics and microwave theory. It is logically organized in two main parts, the first section deals with network analysis, while the second concentrates on signal analysis. As a whole, the text focuses on the fundamental aspects of optical networks. Methodology, rather than analysis, is the focus of the book. The discussion provides the tools you need to perform your own in-depth analysis of optical networks.
This book organizes principles and methods of signal processing and machine learning into the framework of coherence. The book contains a wealth of classical and modern methods of inference, some reported here for the first time. General results are applied to problems in communications, cognitive radio, passive and active radar and sonar, multi-sensor array processing, spectrum analysis, hyperspectral imaging, subspace clustering, and related. The reader will find new results for model fitting; for dimension reduction in models and ambient spaces; for detection, estimation, and space-time series analysis; for subspace averaging; and for uncertainty quantification. Throughout, the transformation invariances of statistics are clarified, geometries are illuminated, and null distributions are given where tractable. Stochastic representations are emphasized, as these are central to Monte Carlo simulations. The appendices contain a comprehensive account of matrix theory, the SVD, the multivariate normal distribution, and many of the important distributions for coherence statistics. The book begins with a review of classical results in the physical and engineering sciences where coherence plays a fundamental role. Then least squares theory and the theory of minimum mean-squared error estimation are developed, with special attention paid to statistics that may be interpreted as coherence statistics. A chapter on classical hypothesis tests for covariance structure introduces the next three chapters on matched and adaptive subspace detectors. These detectors are derived from likelihood reasoning, but it is their geometries and invariances that qualify them as coherence statistics. A chapter on independence testing in space-time data sets leads to a definition of broadband coherence, and contains novel applications to cognitive radio and the analysis of cyclostationarity. The chapter on subspace averaging reviews basic results and derives an order-fitting rule for determining the dimension of an average subspace. These results are used to enumerate sources of acoustic and electromagnetic radiation and to cluster subspaces into similarity classes. The chapter on performance bounds and uncertainty quantification emphasizes the geometry of the Cramer-Rao bound and its related information geometry.
This book presents selected papers from the 2021 International Conference on Electrical and Electronics Engineering (ICEEE 2020), held on January 2-3, 2021. The book focuses on the current developments in various fields of electrical and electronics engineering, such as power generation, transmission and distribution; renewable energy sources and technologies; power electronics and applications; robotics; artificial intelligence and IoT; control, automation and instrumentation; electronics devices, circuits and systems; wireless and optical communication; RF and microwaves; VLSI; and signal processing. The book is a valuable resource for academics and industry professionals alike.
This book gathers selected papers presented at 3rd International Conference on Communication and Computational Technologies (ICCCT 2021), jointly organized in virtual format by Rajasthan Institute of Engineering and Technology, Jaipur and Rajasthan Technical University Kota in association with Soft Computing Research Society, during 27-28 February 2021. The volume is a collection of state-of-the-art research work in the cutting-edge technologies related to communication and intelligent systems. The topics covered are algorithms and applications of intelligent systems, informatics and applications, and communication and control systems.
This text discusses the fundamental physical concepts involved in understanding charged particle and photon beams. The presentation is unified; particle dynamics in linear and circular accelerators are discussed in common language, as are the evolution of particle and laser beams. This book is aimed at the advanced undergraduate student, and contains numerous illustrative exercises.
Some of the most exciting developments in the optics and processing of nanostructured materials can be found in applied science and engineering. The topics covered in this book are at the cutting edge of research.
The book provides a comprehensive exposition of all major topics in digital signal processing (DSP). With numerous illustrative examples for easy understanding of the topics, it also includes MATLAB-based examples with codes in order to encourage the readers to become more confident of the fundamentals and to gain insights into DSP. Further, it presents real-world signal processing design problems using MATLAB and programmable DSP processors. In addition to problems that require analytical solutions, it discusses problems that require solutions using MATLAB at the end of each chapter. Divided into 13 chapters, it addresses many emerging topics, which are not typically found in advanced texts on DSP. It includes a chapter on adaptive digital filters used in the signal processing problems for faster acceptable results in the presence of changing environments and changing system requirements. Moreover, it offers an overview of wavelets, enabling readers to easily understand the basics and applications of this powerful mathematical tool for signal and image processing. The final chapter explores DSP processors, which is an area of growing interest for researchers. A valuable resource for undergraduate and graduate students, it can also be used for self-study by researchers, practicing engineers and scientists in electronics, communications, and computer engineering as well as for teaching one- to two-semester courses.
This book brings together reviews by internationally renowed experts on quantum optics and photonics. It describes novel experiments at the limit of single photons, and presents advances in this emerging research area. It also includes reprints and historical descriptions of some of the first pioneering experiments at a single-photon level and nonlinear optics, performed before the inception of lasers and modern light detectors, often with the human eye serving as a single-photon detector. The book comprises 19 chapters, 10 of which describe modern quantum photonics results, including single-photon sources, direct measurement of the photon's spatial wave function, nonlinear interactions and non-classical light, nanophotonics for room-temperature single-photon sources, time-multiplexed methods for optical quantum information processing, the role of photon statistics in visual perception, light-by-light coherent control using metamaterials, nonlinear nanoplasmonics, nonlinear polarization optics, and ultrafast nonlinear optics in the mid-infrared. |
You may like...
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Fundamentals of Femtosecond Optics
S. A. Kozlov, V.V. Samartsev
Hardcover
R3,072
Discovery Miles 30 720
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
Infrared Thermography in the Evaluation…
Carosena Meola, Simone Boccardi, …
Hardcover
R3,497
Discovery Miles 34 970
|