![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
This book reports on the latest advances in the study of biomedical signal processing, and discusses in detail a number of open problems concerning clinical, biomedical and neural signals. It methodically collects and presents in a unified form the research findings previously scattered throughout various scientific journals and conference proceedings. In addition, the chapters are self-contained and can be read independently. Accordingly, the book will be of interest to university researchers, R&D engineers and graduate students who wish to learn the core principles of biomedical signal analysis, algorithms, and applications, while also offering a valuable reference work for biomedical engineers and clinicians who wish to learn more about the theory and recent applications of neural engineering and biomedical signal processing.
This book presents a technical solution to ensuring the noise immunity of navigation systems in civil aviation aircrafts at the stages of their terminal procedures. It highlights instrumental precision approaches to landing and landing in automatic mode using satellite and inertial radio navigation systems and ground-based augmentation used as the primary means, in accordance with the ICAO requirements. The book is intended for engineering and technical specialists engaged in the development, manufacture and operation of on-board radio electronic systems of aircrafts and ground-based radio engineering support for flights, as well as graduate students and senior students of radio engineering specialties. It is also useful for professionals whose activities are related to air traffic control.
Recent years have witnessed important advancements in our understanding of the psychological underpinnings of subjective properties of visual information, such as aesthetics, memorability, or induced emotions. Concurrently, computational models of objective visual properties such as semantic labelling and geometric relationships have made significant breakthroughs using the latest achievements in machine learning and large-scale data collection. There has also been limited but important work exploiting these breakthroughs to improve computational modelling of subjective visual properties. The time is ripe to explore how advances in both of these fields of study can be mutually enriching and lead to further progress. This book combines perspectives from psychology and machine learning to showcase a new, unified understanding of how images and videos influence high-level visual perception - particularly interestingness, affective values and emotions, aesthetic values, memorability, novelty, complexity, visual composition and stylistic attributes, and creativity. These human-based metrics are interesting for a very broad range of current applications, ranging from content retrieval and search, storytelling, to targeted advertising, education and learning, and content filtering. Work already exists in the literature that studies the psychological aspects of these notions or investigates potential correlations between two or more of these human concepts. Attempts at building computational models capable of predicting such notions can also be found, using state-of-the-art machine learning techniques. Nevertheless their performance proves that there is still room for improvement, as the tasks are by nature highly challenging and multifaceted, requiring thought on both the psychological implications of the human concepts, as well as their translation to machines.
Coherent lightwave communications systems incorporate the major advantages of both lightwave and radio communications, providing more powerful system capabilities such as higher receiver sensitivity and larger transmission capacity. This resource describes in detail the engineering aspects of coherent lightwave communications systems, from fundamental principles through to future prospects. It presents recent research and development data, and gives a detailed look at the devices, problems, applications, and field trials of this rapidly advancing technology. "Coherent Lightwave Communications Systems" includes systematic coverage of all the key research and applications issues, including: modulation/demodulation schemes and bit-error-rate expressions in coherent systems; lasers and receivers for coherent systems; application of optical amplifiers to coherent systems; the effects of optical nonlinearities on coherent systems; comparisons between coherent and intensity-modulation/direct-detection (IM-DD) systems; and historical progress and future prospects of coherent systems. The book also includes a complete list of coherent field trials to date and describes the latest application of the technology to optical measurement systems. More than 235 equations are presented, along with 132 informative figures and over 300 references to the literature.
A cutting-edge look at safety and security applications of photonic sensors With its many superior qualities, photonic sensing technology is increasingly used in early-detection and early-warning systems for biological hazards, structural flaws, and security threats. Photonic Sensing provides for the first time a comprehensive review of this exciting and rapidly evolving field, focusing on the development of cutting-edge applications in diverse areas of safety and security, from biodetection to biometrics. The book brings together contributions from leading experts in the field, fostering effective solutions for the development of specialized materials, novel optical devices, and networking algorithms and platforms. A number of specific areas of safety and security monitoring are covered, including background information, operation principles, analytical techniques, and applications. Topics include: * Document security and structural integrity monitoring, as well as the detection of food pathogens and bacteria * Surface plasmon sensors, micro-based cytometry, optofluidic techniques, and optical coherence tomography * Optic fiber sensors for explosive detection and photonic liquid crystal fiber sensors for security monitoring * Photonics-assisted frequency measurement with promising electronic warfare applications An invaluable, multidisciplinary resource for researchers and professionals in photonic sensing, as well as safety and security monitoring, this book will help readers jump-start their own research and development in areas of physics, chemistry, biology, medicine, mechanics, electronics, and defense.
An intuitive and accessible approach to the fundamentals of physical optics In the newly revised Second Edition of Principles of Physical Optics, eminent researcher Dr. Charles A. Bennet delivers an intuitive and practical text designed for a one-semester, introductory course in optics. The book helps readers build a firm foundation in physical optics and gain valuable, practical experience with a range of mathematical applications, including matrix methods, Fourier analysis, and complex algebra. This latest edition is thoroughly updated and offers 20% more worked examples and 50% more homework problems than the First Edition. Only knowledge of standard introductory sequences in calculus and calculus-based physics is assumed, with the included mathematics limited to what is necessary to adequately address the subject matter. The book provides additional materials on optical imaging and nonlinear optics and dispersion for use in an accelerated course. It also offers: A thorough introduction to the physics of waves, including the one-dimensional wave equation and transverse traveling waves on a string Comprehensive explorations of electromagnetic waves and photons, including introductory material on electromagnetism and electromagnetic wave equations Practical discussions of reflection and refraction, including Maxwell's equations at an interface and the Fresnel equations In-depth examinations of geometric optics, as well as superposition, interference, and diffraction Perfect for advanced undergraduate students of physics, chemistry, and materials science, Principles of Physical Optics also belongs on the bookshelves of engineering students seeking a one-stop introduction to physical optics.
This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for deep learning, Natural Language Processing (NLP), speech recognition, and general predictive analytics. The book provides a hands-on approach to TensorFlow fundamentals for a broad technical audience-from data scientists and engineers to students and researchers. The authors begin by working through some basic examples in TensorFlow before diving deeper into topics such as CNN, RNN, LSTM, and GNN. The book is written for those who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. The authors demonstrate TensorFlow projects on Single Board Computers (SBCs).
This book focuses on pose estimation algorithms for Autonomous Underwater Vehicles (AUVs). After introducing readers to the state of the art, it describes a joint endeavor involving attitude and position estimation, and details the development of a nonlinear attitude observer that employs inertial and magnetic field data and is suitable for underwater use. In turn, it shows how the estimated attitude constitutes an essential type of input for UKF-based position estimators that combine position, depth, and velocity measurements. The book discusses the possibility of including real-time estimates of sea currents in the developed estimators, and highlights simulations that combine real-world navigation data and experimental test campaigns to evaluate the performance of the resulting solutions. In addition to proposing novel algorithms for estimating the attitudes and positions of AUVs using low-cost sensors and taking into account magnetic disturbances and ocean currents, the book provides readers with extensive information and a source of inspiration for the further development and testing of navigation algorithms for AUVs.
This book comprises a collection of papers presented at the International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2021), held at Technical University of Sofia, Sofia, Bulgaria, during 08-10 July 2021. The book covers research papers in the field of N-dimensional multicomponent image processing, multidimensional image representation and super-resolution, 3D image processing and reconstruction, MD computer vision systems, multidimensional multimedia systems, neural networks for MD image processing, data-based MD image retrieval and knowledge data mining, watermarking, hiding and encryption of MD images, MD image processing in robot systems, tensor-based data processing, 3D and multi-view visualization, forensic analysis systems for MD images and many more.
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in wavelet algorithms, which normally deliver better performance. The authors discuss how to provide H-symmetry, where H is an arbitrary symmetry group, for wavelet bases and frames. The book also studies so-called frame-like wavelet systems, which preserve many important properties of frames and can often be used in their place, as well as their approximation properties. The matrix method of computing the regularity of refinable function from the univariate case is extended to multivariate refinement equations with arbitrary dilation matrices. This makes it possible to find the exact values of the Hoelder exponent of refinable functions and to make a very refine analysis of their moduli of continuity.
The introduction of GaAs/ AIGaAs double heterostructure lasers has opened the door to a new age in the application of compound semiconductor materials to microwave and optical technologies. A variety and combination of semiconductor materials have been investigated and applied to present commercial uses with these devices operating at wide frequencies and wavelengths. Semiconductor modulators are typical examples of this technical evolutions and hsve been developed for commercial use. Although these have a long history to date, we are not aware of any book that details this evolution. Consequently, we have written a book to provide a comprehensive account of semiconductor modulators with emphasis on historical details and experimantal reports. The objective is to provide an up-to-date understanding of semiconductor modulators. Particular attention has been paid to multiple quantum well (MQW) modulators operating at long wavelengths, taking into account the low losses and dispersion in silica fibers occuring at around 1.3 and 1.55 mm. At the present time, MQW structures have been investigated but these have not been sufficiently developed to provide characteristic features which would be instructive enough for readers. One problem is the almost daily publication of papers on semiconductor modulators. Not only do these papers provide additional data, but they often modify the interpretations of particular concepts. Almost all chapters refer to the large number of published papers that can be consulted for future study.
This book includes the original, peer-reviewed research articles from the International Conference on Computational Intelligence and Computing (ICCIC 2020), held in September 2020 on a virtual platform jointly organized by SR Group of Institutions, Jhansi, India, IETE, Kolkata Centre, India, and Eureka Scientech Research Foundation, Kolkata India. It covers the latest research in image processing, computer vision and pattern recognition, machine learning, data mining, big data and analytics, information security and privacy, wireless and sensor networks and IoT applications, artificial intelligence, expert systems, natural language processing, image processing, computer vision, artificial neural networks, fuzzy logic, evolutionary optimization, rough sets, web intelligence, intelligent agent technology, virtual reality, and visualization.
This book serves as a guide on photonic assembly techniques. It provides an overview of today's state-of-the-art technologies for photonic packaging experts and professionals in the field. The text guides the readers to the practical use of optical connectors. It also assists engineers to find a way to an effective and inexpensive set-up for their own needs. In addition, many types of current industrial modules and state-of-the-art applications from single fiber to multi fiber are described in detail. Simulation techniques such as FEM, BPM and ray tracing are explained in depth. Finally, all recent reliability test procedures for datacom and telecom modules are illustrated in combination with related standardization aspects.
This book emphasizes recent advances in the creation of biometric identification systems for various applications in the field of human activity. The book displays the problems that arise in modern systems of biometric identification, as well as the level of development and prospects for the introduction of biometric technologies. The authors classify biometric technologies into two groups, distinguished according to the type of biometric characteristics used. The first group uses static biometric parameters: fingerprints, hand geometry, retina pattern, vein pattern on the finger, etc. The second group uses dynamic parameters for identification: the dynamics of the reproduction of a signature or a handwritten keyword, voice, gait, dynamics of work on the keyboard, etc. The directions of building information systems that use automatic personality identification based on the analysis of unique biometric characteristics of a person are discussed. The book is intended for professionals working and conducting research in the field of intelligent information processing, information security, and robotics and in the field of real-time identification systems. The book contains examples and problems/solutions throughout.
Proceedings of a NATO ASI held in Edime, Turkey, September 5-16, 1994
This book provides a comprehensive study of the research outcomes on memristor emulator circuits and includes various analog applications as examples. The authors describe in detail how to design different types of memristor emulators, using active and passive components for different applications. Most of the emulator circuits presented in this book are new and are the outcomes of the authors' recent research. Coverage also includes the latest technological advances in memristor and memristor emulators. Readers will benefit from an understanding of the fundamental concepts and potential applications related to memristors, since these emulator circuits can be built in the laboratory using inexpensive, off-the-shelf circuit components. Introduces readers to memristor emulator circuit design, using regular off-the-shelf circuit components; Describes analog applications of memristors that can be verified by the proposed emulator circuits; Includes a brief overview of the updated mathematical models of the memristor device, with different material implementations; Equips readers to understand the three fingerprints of memristors, which make them unique, compared to the three known, passive elements (resistor, inductor and capacitor).
This book presents the proceedings of the 5th IFToMM Symposium on Mechanism Design for Robotics, MEDER 2021, held in Poitiers, France, 23-25 June 2021. It gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: theoretical and computational kinematics, mechanism design, experimental mechanics, mechanics of robots, control issues of mechanical systems, machine intelligence, innovative mechanisms and applications, linkages and manipulators, micro-mechanisms, dynamics of machinery and multi-body systems. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.
This book deals with a particular class of approximation methods in the context of light scattering by small particles. Soft particles occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications. This class of approximations has been termed as eikonal or soft particle approximations. The study of these approximations is very important because soft particles occur abundantly in nature.
This book provides a comprehensive view of cyber operations, analysis and targeting, including operational examples viewed through a lens of conceptual models available in current technical and policy literature. Readers will gain a better understanding of how the current cyber environment developed, as well as how to describe it for future defense. The author describes cyber analysis first as a conceptual model, based on well-known operations that span from media to suspected critical infrastructure threats. He then treats the topic as an analytical problem, approached through subject matter interviews, case studies and modeled examples that provide the reader with a framework for the problem, developing metrics and proposing realistic courses of action. Provides first book to offer comprehensive coverage of cyber operations, analysis and targeting; Pulls together the various threads that make up current cyber issues, including information operations to confidentiality, integrity and availability attacks; Uses a graphical, model based, approach to describe as a coherent whole the development of cyber operations policy and leverage frameworks; Provides a method for contextualizing and understanding cyber operations.
This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. This expanded and updated new edition includes substantial new material on nonlinear frequency conversion and Raman fiber lasers and amplifiers, as well as an expanded list of references inclusive of the recent literature in the field. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn the basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, the main operational laser regimes, and will receive practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professional physicists and engineers who work with lasers in the optical and telecommunications field, as well as those in the chemical and biological industries.
This book provides readers with a comprehensive review of image quality assessment technology, particularly applications on screen content images, 3D-synthesized images, sonar images, enhanced images, light-field images, VR images, and super-resolution images. It covers topics containing structural variation analysis, sparse reference information, multiscale natural scene statistical analysis, task and visual perception, contour degradation measurement, spatial angular measurement, local and global assessment metrics, and more. All of the image quality assessment algorithms of this book have a high efficiency with better performance compared to other image quality assessment algorithms, and the performance of these approaches mentioned above can be demonstrated by the results of experiments on real-world images. On the basis of this, those interested in relevant fields can use the results obtained through these quality assessment algorithms for further image processing. The goal of this book is to facilitate the use of these image quality assessment algorithms by engineers and scientists from various disciplines, such as optics, electronics, math, photography techniques and computation techniques. The book can serve as a reference for graduate students who are interested in image quality assessment techniques, for front-line researchers practicing these methods, and for domain experts working in this area or conducting related application development.
Optical Interconnects provides a fascinating picture of the state of the art in optical interconnects and a perspective on what can be expected in the near future. It is composed of selected reviews authored by world leaders in the field, and these reviews are written from either an academic or industrial viewpoint. An in-depth discussion of the path towards fully-integrated optical interconnects in microelectronics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of microelectronics and optoelectronics. |
You may like...
Infrared Thermography in the Evaluation…
Carosena Meola, Simone Boccardi, …
Hardcover
R3,497
Discovery Miles 34 970
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
Lanthanide-Doped Aluminate Phosphors…
Atul Yerpude, Vijay B Pawade, …
Paperback
R4,536
Discovery Miles 45 360
Atomic and Molecular Manipulation…
Andrew J. Mayne, Gerard Dujardin
Hardcover
R3,430
Discovery Miles 34 300
|