![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Laser Processing and Chemistry gives an overview of the
fundamentals and applications of laser-matter interactions, in
particular with regard to laser material processing. Special
attention is given to laser-induced physical and chemical processes
at gas-solid, liquid-solid, and solid-solid interfaces. Starting
with the background physics, the book proceeds to examine
applications of laser techniques in micro-machining, and the
patterning, coating, and modification of material surfaces.
Thisfourth edition has been revised and enlarged to cover new
topics such as 3D microfabrication, advances in nanotechnology,
ultrafast laser technology and laser chemical processing (LCP).
This book presents mathematical models that arise in current photographic science. The book contains seventeen chapters, each dealing with one area of photographic science, and a final chapter containing exercises. Each chapter, except the two introductory chapters, begin with general background information at a level understandable by graduate and undergraduate students. It then proceeds to develop a mathematical model, using mathematical tools such as ordinary differential equations, partial differential equations, and stochastic processes. Next, some mathematical results are mentioned, often providing a partial solution to problems raised by the model. Finally, most chapters include open problems. The last chapter of the book contains "Modeling and Applied Mathematics" exercises based on the material presented in the earlier chapters. These exercises are intended primarily for graduate students and advanced undergraduates.
This timely book presents innovative technologies for use in the diagnosis, monitoring, and treatment of brain disease. These technologies offer exciting possibilities in the medical field owing to their low-cost, portability and safety. The authors address cerebrovascular diseases such as stroke, ischemia, haemorrhage, and vasospasm, these diseases having an ever-increasing societal relevance due to the global ageing population. The authors describe the potential of novel techniques such as microwave imaging and present innovative modalities for treatment of brain tumours using electromagnetic fields and nano-composites, as well as for monitoring brain temperature during surgery. Finally, Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy addresses the perspectives which arise from multi-modal multi-spectral EM modalities, which make a synergic use of the different portions of the electromagnetic spectrum. This text will be of interest to readers from various different areas, given the fundamental interdisciplinarity of the subject matter. This includes researchers or practitioners in the field of electrical engineering, applied physicists, and applied mathematicians working on imaging applications for biomedical and electromagnetic technologies. Neurologists and radiologists may also find this book of interest, as may graduate students in these areas.
Still Image Compression on Parallel Computer Architectures investigates the application of parallel-processing techniques to digital image compression. Digital image compression is used to reduce the number of bits required to store an image in computer memory and/or transmit it over a communication link. Over the past decade advancements in technology have spawned many applications of digital imaging, such as photo videotex, desktop publishing, graphics arts, color facsimile, newspaper wire phototransmission and medical imaging. For many other contemporary applications, such as distributed multimedia systems, rapid transmission of images is necessary. Dollar cost as well as time cost of transmission and storage tend to be directly proportional to the volume of data. Therefore, application of digital image compression techniques becomes necessary to minimize costs. A number of digital image compression algorithms have been developed and standardized. With the success of these algorithms, research effort is now directed towards improving implementation techniques. The Joint Photographic Experts Group (JPEG) and Motion Photographic Experts Group(MPEG) are international organizations which have developed digital image compression standards. Hardware (VLSI chips) which implement the JPEG image compression algorithm are available. Such hardware is specific to image compression only and cannot be used for other image processing applications. A flexible means of implementing digital image compression algorithms is still required. An obvious method of processing different imaging applications on general purpose hardware platforms is to develop software implementations. JPEG uses an 8 A- 8 blockof image samples as the basic element for compression. These blocks are processed sequentially. There is always the possibility of having similar blocks in a given image. If similar blocks in an image are located, then repeated compression of these blocks is not necessary. By locating similar blocks in the image, the speed of compression can be increased and the size of the compressed image can be reduced. Based on this concept an enhancement to the JPEG algorithm is proposed, called Bock Comparator Technique (BCT). Still Image Compression on Parallel Computer Architectures is designed for advanced students and practitioners of computer science. This comprehensive reference provides a foundation for understanding digital image compression techniques and parallel computer architectures.
This book highlights recent advance in the area of Machine Learning and IoT, and their applications to solve societal issues/problems or useful for various users in the society. It is known that many smart devices are interconnected and the data generated is being analyzed and processed with machine learning models for prediction, classification, etc., to solve human needs in various sectors like health, road safety, agriculture, and education. This contributed book puts together chapters concerning the use of intelligent techniques in various aspects related to the IoT domain from protocols to applications, to give the reader an up-to-date picture of the state-of-the-art on the connection between computational intelligence, machine learning, and IoT.
Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available. This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method. Dr. Feng Li is a scientific researcher at Cornell University.
Recent advances in semiconductor technology have made it possible to fabricate microcavity structures in which both photon fields and electron-hole pairs (or excitons) are confined in a small volume comparable to their wavelength. The radiative properties of the electron-hole pairs and excitons are modified owing to the drastic change in the structure of the electromagnetic-field modes. This book is the first to give a comprehensive account of the theory of semiconductor cavity quantum electrodynamics for such systems in the weak-coupling and strong-coupling regimes. The important concepts are presented, together with relevant, recent experimental results.
1.1 Digital Optics as a Subject Improvement of the quality of optical devices has always been the central task of experimental optics. In modern terms, improvements in sensitivity and resolution have equated higher quality with greater informational throughput. For most of today's applications, optics and electronics have, in essence, solved the problem of generating high quality pictures with great informational ca pacity. Effective use of the enormous amount of information contained in the images necessitates processing pictures, holograms, and interferograms. The manner in which information might be extracted from optical entities has be come a topic of current interest. The informational aspects of optical signals and systems might serve as a basis for attacking this question by making use of information theory and signal communication theory, and by enlisting modern tools and methods for data processing (the most important and powerful of which are those of digi tal computation). Exploiting modern advances in electronics has allowed new wavelength ranges and new kinds of radiation to be used in optics. Comput ers have extended our knowledge of the informational essence of radiation. Thus, computerized optical devices enhance not only the optical capabilities of sight, but also its analytical capabilities as well, thus opening qualitatively new horizons to all the areas in which optical devices have found application."
Optomechatronics, as a fusion of optical and mechatronic engineering, have played a key role in developing innovative products such as high precision instruments, defence, photonic systems, measurements, diagnostics, semiconductors, and so on. And optomechatronics technologies have greatly contributed to the state of the art industries in optics design, manufacturing, optical imaging, metrology, and other applications. This book covers a multitude of optomechatronics advantages and solutions. It includes 20 contributions featuring laser and fiber optics, nitride semiconductors, LIDAR technology, machine vision, optical imaging, micro optoelectro mechanical systems, optical metrology, optical-based sensors and actuators, optomechatronics for microscopes, optical pattern and fiber, optomechatronics for bio-medical applications, optomechatronics for manufacturing applications, robotics for micro and nano scales, and other applications. As revised and extended versions, the contributed articles are selected from the proceedings of the 2013 International Symposium on Optomechatronic Technologies held on Oct 28-30, 2013 in Jeju Island, Korea.
This book presents a unified view of image motion analysis under the variational framework. Variational methods, rooted in physics and mechanics, but appearing in many other domains, such as statistics, control, and computer vision, address a problem from an optimization standpoint, i.e., they formulate it as the optimization of an objective function or functional. The methods of image motion analysis described in this book use the calculus of variations to minimize (or maximize) an objective functional which transcribes all of the constraints that characterize the desired motion variables. The book addresses the four core subjects of motion analysis: Motion estimation, detection, tracking, and three-dimensional interpretation. Each topic is covered in a dedicated chapter. The presentation is prefaced by an introductory chapter which discusses the purpose of motion analysis. Further, a chapter is included which gives the basic tools and formulae related to curvature, Euler Lagrange equations, unconstrained descent optimization, and level sets, that the variational image motion processing methods use repeatedly in the book.
Environmental and chemical sensors in optical fiber sensor technology The nature of the environment in which we live and work, and the precarious state of many aspects of the natural environment, has been a major lesson for scientists over the last few decades. Public awareness of the issues involved is high, and often coupled with a scepticism of the ability of the scientist and engineer to provide an adequate, or even rapid solution to the preservation of the environment before further damage is done, and to achieve this with a mini mum of expenditure. Monitoring of the various aspects of the environment, whether it be external or internal to ourselves and involving chemical, physical or biomedical parameters is an essential process for the well-being of mankind and of the individual. Legis lative requirements set new standards for measurement and control all around us, which must be met by the most appropriate of the technologies available, commensurate with the costs involved. Optical fiber sensor technology has a major part to play in this process, both to complement existing technologies and to promote new solutions to difficult measurement issues. The developments in new sources and detectors covering wider ranges of the electromagnetic spectrum, with higher sensitivity, allow the use of techniques that some time ago would have been considered inappropriate or lacking in sufficient sensitivity."
China Satellite Navigation Conference (CSNC 2022) Proceedings presents selected research papers from CSNC 2022 held during 22nd-25th May, 2022 in Beijing, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2022 which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
This book presents scientific and technological innovations and advancements already developed or under development in academia, industry, and research communities. It includes fundamental ideas and advancement in terahertz technology covering high intensity terahertz wave generation, THz detection, different modes of THz wave generation, THz modulation system, and terahertz propagation channel modeling. It highlights methodologies for the design of terahertz components and system technologies including emerging applications. The chapter contents are based on theoretical, methodological, well-established, and validated empirical work dealing with different topics in the terahertz domain. The book covers a very broad audience ranging from basic sciences to experts and learners in engineering and technology. It would be a good reference for advanced ideas and concepts in THz technology which will best suit microwave, biomedical, and electrical and communication engineers working towards next-generation technology.
This thesis describes the first demonstration of a cooperative optical non-linearity based on Rydberg excitation. Whereas in conventional non-linear optics the non-linearity arises directly from the interaction between light and matter, in a cooperative process it is mediated by dipole-dipole interactions between light-induced excitations. For excitation to high Rydberg states where the electron is only weakly bound, the dipole-dipole interactions are extremely large and long range, enabling an enormous enhancement of the non-linear effect. Consequently, cooperative non-linear optics using Rydberg excitations opens a new era for quantum optics enabling large single photon non-linearity to be accessible in free space for the first time. The thesis describes the theoretical underpinnings of the non- linear effect, the pioneering experimental results and implications for experiments in the single photon regime.
This book presents the latest advances in remote-sensing and geographic information systems and applications. It is divided into four parts, focusing on Airborne Light Detection and Ranging (LiDAR) and Optical Measurements of Forests; Individual Tree Modelling; Landscape Scene Modelling; and Forest Eco-system Modelling. Given the scope of its coverage, the book offers a valuable resource for students, researchers, practitioners, and educators interested in remote sensing and geographic information systems and applications.
Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data. Challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, pattern classification and target recognition, visualization of high dimensional imagery.
Controlling the mechanical, electrical, magnetic, and optical properties of materials by advanced fabrication methods (Le. ; Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition) has become the new paradigm in our research era. Sensors, being the most vital part of the electronic data processing and decision making machines, stand to gain the most from engineering of the properties of materials. Microfabrication technology has already contributed significantly to the batch fabrication of micro-sensors with higher over all qualities compared to their counterparts that are fabricated using other methods. Batch fabrication of micro-sensors i) results in more uniform properties of co-fabricated devices, ii) nearly eliminates the need for characterization of individual sensors, and iii) eliminates a need for laborious alignment procedures. A less obvious benefit of using microfabrication methods is the possibility of precise control over the dimensions of the sensor. This control enables engineering of some of the properties of the material which affect the sensor's operation. There are many examples of this in the literature. Optical sensors are known to have superior properties over their counterparts that use other (i. e. ; electrostatic and magnetic) means of detection. To name a few, these advantages are: i) immunity to electromagnetic interferences, ii) higher sensitivities compared to the other types of sensors, iii) simplicity of operation principles, and iv) simplicity of overall construction.
This book presents high-quality research in the field of 3D imaging technology. The second edition of International Conference on 3D Imaging Technology (3DDIT-MSP&DL) continues the good traditions already established by the first 3DIT conference (IC3DIT2019) to provide a wide scientific forum for researchers, academia and practitioners to exchange newest ideas and recent achievements in all aspects of image processing and analysis, together with their contemporary applications. The conference proceedings are published in 2 volumes. The main topics of the papers comprise famous trends as: 3D image representation, 3D image technology, 3D images and graphics, and computing and 3D information technology. In these proceedings, special attention is paid at the 3D tensor image representation, the 3D content generation technologies, big data analysis, and also deep learning, artificial intelligence, the 3D image analysis and video understanding, the 3D virtual and augmented reality, and many related areas. The first volume contains papers in 3D image processing, transforms and technologies. The second volume is about computing and information technologies, computer images and graphics and related applications. The two volumes of the book cover a wide area of the aspects of the contemporary multidimensional imaging and the related future trends from data acquisition to real-world applications based on various techniques and theoretical approaches.
Das Werk MRI Physics: Tech to Tech Explanations soll angehenden MRT-Spezialisten und Strahlentherapeuten, die sich auf die Prufungen zur MRT-Zertifizierung vorbereiten, dabei helfen, schwierige Konzepte und Themen schnell und einfach zu verstehen. Der nutzliche Leitfaden wurde von einem sehr erfahrenen Technologen verfasst und erklart in einer klaren und leserfreundlichen Weise, was jeder MRT-Spezialist wissen muss. Zu den Themen des Buchs zahlen Sicherheitsaspekte im Zusammenhang mit Magnetfeld und Hochfrequenz, Pulssequenzen, Artefakte, MRT-Mathematik, die besonders schwierigen Gradienten und IV-Kontrastmittel. * Grundlegende Hinweise zu Sicherheitsfragen, Protokolloptionen, kritischem Denken und Bildkontrastoptimierung * Einfache Darstellung des anspruchsvollen Themas MRT-Physik durch klare Sprache und verstandliche Erklarungen * Prufungsrelevante Inhalte fur die Prufungen der American Registry of Radiologic Technologists (ARTT) und Continuing Qualifications Requirements (CQR) * Mit zahlreichen Illustrationen und Fotos zu verschiedenen MRT-Konzepten, Pulssequenz-Design, Artefakten und der Anwendung der Konzepte im klinischen Umfeld
The International Symposium of Acoustical Imaging has been widely recognized as the premier forum for presentations of advanced research results in both theoretical and experimental development. Held regularly since 1968, the symposium brings together th leading international researchers in the area of acoustical imaging. The 24 meeting is the third time Santa Barbara hosted this international conference and it is the first time the meeting was held on the campus of the University of California, Santa Barbara. As many regular participants noticed over the years, this symposium has grown significantly in size due to the quality of the presentations as well as the organization itself. A few years ago multiple and poster sessions were introduced in order to accommodate this growth. In addition, the length of the presentations was shortened so more papers could be included in the sessions. During recent meetings there were discussions regarding the possibility of returning to the wonderful years when the symposium was organized in one single session with sufficient time to allow for in-depth presentation as well as discussions of each paper. And the size of the meeting was small enough that people were able to engage in serious technical interactions and all attendees would fit into one photograph. In light of the constraints of the limited budget with respect to the escalating costs it was not considered feasible.
This book discusses the principles, approaches, concepts and development programs for integrated aircraft avionics. The functional tasks of integrated on-board radio electronic equipment (avionics) of navigation, landing, data exchange and air traffic control are formulated that meet the modern requirements of civil and military aviation, and the principles of avionics integration are proposed. The modern approaches to the joint processing of information in navigation and landing complexes are analyzed. Algorithms of multichannel information processing in integrated avionics are considered, and examples of its implementation are presented. This book is intended for scientists and professionals in the field of aviation equipment, students and graduate students of relevant specialties.
This book contains contributions written by the world-leading scientists in high-resolution laser spectroscopy, quantum optics and laser physics. Emphasis is placed on precision related to results in a variety of fields, such as atomic clocks, frequency standards, and the measurement of physical constants in atomic physics. Furthermore, illustrations and engineering applications of the fundamentals of quantum mechanics are widely covered. It has contributions by Nobel prize winners Norman F. Ramsey and Steven Chu, and is dedicated to Theodor W. Hänsch on the occasion of his 60th birthday.
The quantum statistical properties of the light wave generated in a semiconductor laser or a light-emitting diode (LED) has been a field of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices. This volume is composed of four major parts. The first discusses the generation of sub-shot-noise light in macroscopic pn junction light-emitting devices, including semiconductor laser and light-emitting diodes. The second part discusses the application of squeezed light in high-precision measurement, including spectroscopy and interferometry. The third part addresses the Coulomb blockade effect in a mesoscopic pn junction and the generation of single photon states. The last part covers the detection of single photons using a visible light photon counter.
This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. |
You may like...
Confocal Microscopy - Methods and…
Stephen W. Paddock
Hardcover
Three-Dimensional Electron Microscopy…
Thomas Muller-Reichert, Gaia Pigino
Hardcover
R4,281
Discovery Miles 42 810
|