![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
An impulse for writing this book has originated from the effort to sum marize and publicise the acquired results of a research team at the De partment of Automation of the Faculty of Electrical Engineering and In formatics, Slovak Technical University in Bratislava. The research team has been involved for a long time with control problems for machine production mechanisms and, in recent (approximately 15) years, its effort was aimed mostly at the control of electrical servosystems of robots. Within this scope, the members of the authors' staff solved the State Re search Task Ultrasonic sensing of the position of a robot hand, which was coordinated by the Institute of Technical Cybernetics of the Slovak Academy of Sciences in Bratislava. The problem was solved in a complex way, i.e. from a conceptual de sign of the measurement, through the measurement and evaluation sys tem, up to connection to the control system of a robot. Compensation of the atmospheric influence on the precision of measurement, as well as on the electroacoustical transducers, were important parts of the solution. The solution was aimed at using the ultrasonic pulse method which en ables the measurement of absolute 3D position coordinates, contrary to the relative position measurements by the incremental pick-ups which are standard robotic equipment."
Photonic-based A/D conversion has received and continues to receive considerable attention as an alternative approach to providing enhanced resolution and speed in high-performance applications. Some of the potential advantages of using photonic technologies are high-speed clocking, broadband sampling, reduced mutual interference of signals, and compatibility with existing photonic-based systems. This book provides a comprehensive look at the application of photonic approaches to the problem of analog-to-digital conversion. It shows progress made, discusses present research, and gives a glimpse of potential future technologies.
As we approach the end of the present century, the elementary particles of light (photons) are seen to be competing increasingly with the elementary particles of charge (electrons/holes) in the task of transmitting and processing the insatiable amounts of infonnation needed by society. The massive enhancements in electronic signal processing that have taken place since the discovery of the transistor, elegantly demonstrate how we have learned to make use of the strong interactions that exist between assemblages of electrons and holes, disposed in suitably designed geometries, and replicated on an increasingly fine scale. On the other hand, photons interact extremely weakly amongst themselves and all-photonic active circuit elements, where photons control photons, are presently very difficult to realise, particularly in small volumes. Fortunately rapid developments in the design and understanding of semiconductor injection lasers coupled with newly recognized quantum phenomena, that arise when device dimensions become comparable with electronic wavelengths, have clearly demonstrated how efficient and fast the interaction between electrons and photons can be. This latter situation has therefore provided a strong incentive to devise and study monolithic integrated circuits which involve both electrons and photons in their operation. As chapter I notes, it is barely fifteen years ago since the first demonstration of simple optoelectronic integrated circuits were realised using m-V compound semiconductors; these combined either a laser/driver or photodetector/preamplifier combination.
This volume treats new materials (nanotubes and quantum dots) and new techniques (synchrotron radiation scattering and cavity confined scattering). In the past five years, Raman and Brillouin scattering have taken a place among the most important research and characterization methods for carbon nanotubes. Among the novel techniques discussed in this volume are those employing synchrotron radiation as a light source.
Imaging for Forensics and Security: From Theory to Practice provides a detailed analysis of new imaging and pattern recognition techniques for the understanding and deployment of biometrics and forensic techniques as practical solutions to increase security. It contains a collection of the recent advances in the technology ranging from theory, design, and implementation to performance evaluation of biometric and forensic systems. This book also contains new methods such as the multiscale approach, directional filter bank, and wavelet maxima for the development of practical solutions to biometric problems. The book introduces a new forensic system based on shoeprint imagery with advanced techniques for use in forensics applications. It also presents the concept of protecting the originality of biometric images stored in databases against intentional and unintentional attacks and fraud detection data in order to further increase the security.
In 1989 the time was hot to create a workshop series dedicated to the dicussion of the latest results in the automatic processing of fringe patterns. This idea was promoted by the insight that automatic and high precision phase measurement techniques will play a key role in all future industrial applications of optical metrology. However, such a workshop must take place in a dynamic environment. The- fore the main topics of the previous events were always adapted to the most interesting subjects of the new period. In 1993 new prin- ples of optical shape measurement, setup calibration, phase unwr- ping and nondestructive testing were the focus of discussion, while in 1997 new approaches in multi-sensor metrology, active measu- ment strategies and hybrid processing technologies played a central role. 2001, the first meeting in the 21st century, was dedicated to - tical methods for micromeasurements, hybrid measurement te- nologies and new sensor solutions for industrial inspection. The fifth workshop takes place in Stuttgart, the capital of the state of Baden- Wurttemberg and the centre of a region with a long and remarkable tradition in engineering. Thus after Berlin 1989, Bremen 1993, 1997 and 2001, Stuttgart is the third Fringe city where international - perts will meet each other to share new ideas and concepts in optical metrology. This volume contains the papers presented during FRINGE 2005."
Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing.
These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered. The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray generation XUV and X-ray optics and metrology-Driving laser technology Theory and modeling of X-ray gain medium and beam characteristics Applications of high brightness and ultrashort X-ray sources
This book presents details of a text-to-speech synthesis procedure using epoch synchronous overlap add (ESOLA), and provides a solution for development of a text-to-speech system using minimum data resources compared to existing solutions. It also examines most natural speech signals including random perturbation in synthesis. The book is intended for students, researchers and industrial practitioners in the field of text-to-speech synthesis.
This text discusses the fundamental physical concepts involved in understanding charged particle and photon beams. The presentation is unified; particle dynamics in linear and circular accelerators are discussed in common language, as are the evolution of particle and laser beams. This book is aimed at the advanced undergraduate student, and contains numerous illustrative exercises.
This book by Lev M. Blinov is ideal to guide researchers from their very first encounter with liquid crystals to the level where they can perform independent experiments on liquid crystals with a thorough understanding of their behaviour also in relation to the theoretical framework. Liquid crystals can be found everywhere around us. They are used in virtually every display device, whether it is for domestic appliances of for specialized technological instruments. Their finely tunable optical properties make them suitable also for thermo-sensing and laser technologies. There are many monographs written by prominent scholars on the subject of liquid crystals. The majority of them presents the subject in great depth, sometimes focusing on a particular research aspect, and in general they require a significant level of prior knowledge. In contrast, this books aims at an audience of advanced undergraduate and graduate students in physics, chemistry and materials science. The book consists of three parts: the first part, on structure, starts from the fundamental principles underlying the structure of liquid crystals, their rich phase behaviour and the methods used to study them; the second part, on physical properties, emphasizes the influence of anisotropy on all aspects of liquid crystals behaviour; the third, focuses on electro-optics, the most important properties from the applications standpoint. This part covers only the main effects and illustrates the underlying principles in greater detail. Professor Lev M. Blinov has had a long carrier as an experimentalist. He made major contributions in the field of ferroelectric mesophases. In 1985 he received the USSR state prize for investigations of electro-optical effects in liquid crystals for spatial light modulators. In 1999 he was awarded the Frederiks medal of the Soviet Liquid Crystal Society and in 2000 he was honoured with the G. Gray silver medal of the British Liquid Crystal Society. He has held many visiting academic positions in universities and laboratories across Europe and in Japan.
This book gives the first unified presentation of the physics and applications of optoelectronic devices. It covers the devices whose operation relies on the properties of quantum wells and fiber optics as well as their applications for optical communications and optical signal processing. The reader will benefit from a comprehensive mathematical treatment and from a state of the art presentation of the latest results in applied optoelectronics and semiconductor physics. The two different and complementary physical theories for describing optoelectronic devices, namely the electromagnetic field theory and quantum mechanics, are treated together in a combined manner, such that links and analogies are made apparent wherever possible.
This book offers a comprehensive overview of the development, current state, and future prospects of wide bandgap semiconductor materials and related optoelectronics devices. With 901 references, 333 figures and 21 tables, this book will serve as a one-stop source of knowledge on wide bandgap semiconductors and related optoelectronics devices.
Probing matter with beams of photons, neutrons and electrons provides the main source of information about both the microscopic and macroscopic structure of materials. This is particularly true of media, such as crystals and liquid crystals, that have a periodic structure. This book discusses the interaction of waves (which may represent x-rays, gamma rays, electrons, or neutrons) with various kinds of ordered media. After two chapters dealing with exact and approximate solutions to the scattering problem in periodic media in general, the author discusses: the diffraction of Moessbauer radiation in magnetically ordered crystals; the optics of chiral liquid crystals; the radiation of fast particles in regular media (Cherenkov radiation); nonlinear optics of periodic media; neutron scattering in magnetically ordered media; polarization phenomena in x-ray optics; magnetic x-ray scattering; and Moessbauer filtration of synchrotron radiation.
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.
This essential volume, a brilliant source for engineers as well as scientists in numerous fields, document the state of the art of laser physics and it applications. Scientific trends and related technological aspects are considered by compiling results and conclusions from phenomenology, observation and experiments. Reliable data, physical fundamentals and detailed references are presented. In recent decades the laser source has matured to a universal tool.
The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will become familiar with the method, to design applications on a physically correct basis for performing measurements accurately. Additionally, the appendix provides necessary practical information, such as acoustic properties.
This book offers a detailed and comprehensive account of the engineering of the world's first nonimaging Fresnel lens solar concentrator. The book closes a gap in solar concentrator design, and describes nonimaging refractive optics and its numerical mathematics . The contents follow a systems approach that is absent in standard handbooks of optics or solar energy. The reader is introduced to the principles, theories, and advantages of nonimaging optics from the standpoint of concentrating sunlight (the solar concentrator idea). The book shows the reader how to find his or her own optical solution using the rules and methodologies covering the design and the assessment of the nonimaging lens. This novel solar concentrator is developed within the natural constraints presented by the sun and in relation to competitive solutions offered by other concentrators.
Provides a comprehensive guide to measurements with lasers Examines the design of optical and laser-based instruments Reviews the development of measurement strategies Includes two new chapters on self-mixing interferometry and quantum sensing Includes end of chapter problems
The Physical Electronics Department of SRI International (formerly Stanford Research Institute) has been pioneering the development of devices fabricated to submicron tolerances for well over 20 years. In 1961, a landmark paper on electron-beam lithography and its associated technologies was published by K. R. Shoulderst (then at SRI), which set the stage for our subsequent efforts in this field. He had the foresight to believe that the building of such small devices was actually within the range of human capabilities. As a result of this initial momentum, our experience in the technologies associated with microfabrication has become remarkably comprehensive, despite the relatively small size of our research activity. We have frequently been asked to deliver seminars or provide reviews on various aspects of micro fabrication. These activities made us aware of the need for a comprehensive overview of the physics of microfabrication. We hope that this book will fill that need."
Reasoning for Information: Seeking and Planning Dialogues provides a logic-based reasoning component for spoken language dialogue systems. This component, called Problem Assistant is responsible for processing constraints on a possible solution obtained from various sources, namely user and the system's domain-specific information. The authors also present findings on the implementation of a dialogue management interface to the Problem Assistant. The dialogue system supports simple mixed-initiative planning interactions in the TRAINS domain, which is still a relatively complex domain involving a number of logical constraints and relations forming the basis for the collaborative problem-solving behavior that drives the dialogue.
The imaging process in stellar interferometers is explained starting from first principles on wave propagation and diffraction. Wave propagation through turbulence is described in detail using Kolmogorov statistics. The impact of turbulence on the imaging process is discussed both for single telescopes and for interferometers. Correction methods (adaptive optics and fringe tracking) are presented including wavefront sensing/fringe sensing methods and closed loop operation. Instrumental techniques like beam combination and visibility measurements (modulus and phase) as well as Nulling and heterodyne interferometry are described. The book closes with examples of observing programmes linking the theory with individual astrophysical programmes.
This book provides a cross-section of cutting-edge research areas being pursued by researchers in spatial data handling and geographic information science (GIS). It presents selected papers on the advancement of spatial data handling and GIS in digital cartography, geospatial data integration, geospatial database and data infrastructures, geospatial data modeling, GIS for sustainable development, the interoperability of heterogeneous spatial data systems, location-based services, spatial knowledge discovery and data mining, spatial decision support systems, spatial data structures and algorithms, spatial statistics, spatial data quality and uncertainty, the visualization of spatial data, and web and wireless applications in GIS.
This volume focuses on the characterization of nano-optical materials and optical near-field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics. |
![]() ![]() You may like...
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,628
Discovery Miles 36 280
Enabling Technology in Optical Fiber…
Yang Yue, Jian Zhao, …
Hardcover
R1,462
Discovery Miles 14 620
Handbook of Research on Deep…
Alex Noel Joseph Raj, Vijayalakshmi G. V. Mahesh, …
Hardcover
R9,211
Discovery Miles 92 110
|