![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se. Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception.
This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis. The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a further chapter on DNN based mask estimation for monaural speech separation. In section four, sparse component analysis (SCA) is discussed, with chapters on source separation using audio directional statistics modelling, multi-microphone MMSE-based techniques and diffusion map methods. The book brings together leading researchers to provide tutorial-like and in-depth treatments on major audio source separation topics, with the objective of becoming the definitive source for a comprehensive, authoritative, and accessible treatment. This book is written for graduate students and researchers who are interested in audio source separation techniques based on NMF, DNN and SCA.
This book reviews techniques used to characterize non-linear optical constants of chalcogenide glasses in bulk or thin films, and presents the properties of many chalcogenide systems. A range of applications of these glasses are surveyed, including ultra-fast switching, optical limiting, second harmonic generation and electro-optic effects. Also addressed are suitability of chalcogenide films in all-optical integrated circuits, fabrication of rib as well as ridge waveguides and of fiber gratings.
This book highlights the various topics in which luminescence and electrochemistry are intimately coupled. The topic of this book is clearly at the frontier between several scientific domains involving physics, chemistry and biology. Applications in these various fields naturally also need to be mentioned, especially concerning displays and advanced investigation techniques in analytical chemistry or for biomedical issues.
Optical and photonic systems and devices have significant potential for homeland security. "Optical Imaging Sensors and Systems for Homeland Security Applications" presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers.
This book provides readers with the necessary background information and advanced concepts in the field of circuits, at the crossroads between physics, mathematics and system theory. It covers various engineering subfields, such as electrical devices and circuits, and their electronic counterparts. Based on the idea that a modern university course should provide students with conceptual tools to understand the behavior of both linear and nonlinear circuits, to approach current problems posed by new, cutting-edge devices and to address future developments and challenges, the book places equal emphasis on linear and nonlinear, two-terminal and multi-terminal, as well as active and passive circuit components. The theory is developed systematically, starting with the simplest circuits (linear, time-invariant and resistive) and providing food for thought on nonlinear circuits, potential functions, linear algebra and geometrical interpretations of selected results. Contents are organized into a set of first-level and a set of advanced-level topics. The book is rich in examples and includes numerous solved problems. Further topics, such as signal processing and modeling of non-electric physical phenomena (e.g., hysteresis or biological oscillators) will be discussed in volume 2.
This book introduces readers to essential tools for the measurement and analysis of information loss in signal processing systems. Employing a new information-theoretic systems theory, the book analyzes various systems in the signal processing engineer's toolbox: polynomials, quantizers, rectifiers, linear filters with and without quantization effects, principal components analysis, multirate systems, etc. The user benefit of signal processing is further highlighted with the concept of relevant information loss. Signal or data processing operates on the physical representation of information so that users can easily access and extract that information. However, a fundamental theorem in information theory-data processing inequality-states that deterministic processing always involves information loss. These measures form the basis of a new information-theoretic systems theory, which complements the currently prevailing approaches based on second-order statistics, such as the mean-squared error or error energy. This theory not only provides a deeper understanding but also extends the design space for the applied engineer with a wide range of methods rooted in information theory, adding to existing methods based on energy or quadratic representations.
The European Community regards training as a priority area and has therefore developed a series of programmes in the field of vocational training. This book is the result of a pilot project selected under two of these Community Action Programmes. It was initially selected under the COMETT programme, concerned with the development of continuing vocational training in the European Community. Moreover, it was one of the few selected projects to receive further funding under a second selection in the context of the LEONARDO DA VINCI Action Programme for the implementation of a European Community Vocational Training policy. It is with great pleasure that I present the outcome of this project which embodies one of the fundamental objectives of the LEONARDO DA VINCI Programme - training for new technologies in SMEs, which make a significant contribution to economic development in Europe. K DRAXLER Director Directorate General XXII European Commission x Acknowledgements The Volume Editor gratefully acknowledges funding by the LEONARDO DA VINCI Programme of the Commission of the European Community and by the Austrian Federal Ministry of Science and Transport whose financial support has made the EuroLaser Academy a reality and has led directly to the generation of this handbook. He is also indebted to Director Dr. Klaus Draxler, Head of the LEONARDO DA VINCI Programme, DG XXII of the Commission of the European Community, moreover to Director General Raul Kneucker, Minister's Advisor Helmut Schacher and Mrs. Friederike Pranckl-Kloepfer from the Austrian Federal Ministry of Science and Transport.
This book provides a comprehensive overview of the
state-of-the-art, data flow-based techniques for the analysis,
modeling and mapping technologies of concurrent applications on
multi-processors. The authors present a flow for designing embedded
hard/firm real-time multiprocessor streaming applications, based on
data flow formalisms, with a particular focus on wireless modem
applications. Architectures are described for the design tools and
run-time scheduling and resource management of such a platform.
Video technology promises to be the key for the transmission of motion video. A number of video compression techniques and standards have been introduced in the past few years, particularly the MPEG-1 and MPEG-2 for interactive multimedia and for digital NTSC and HDTV applications, and H.2611H.263 for video telecommunications. These techniques use motion estimation techniques to reduce the amount of data that is stored and transmitted for each frame. This book is about these motion estimation algorithms, their complexity, implementations, advantages, and drawbacks. First, we present an overview of video compression techniques with an emphasis to techniques that use motion estimation, such as MPEG and H.2611H.263. Then, we give a survey of current motion estimation search algorithms, including the exhaustive search and a number of fast search algorithms. An evaluation of current search algorithms, based on a number of experiments on several test video sequences, is presented as well. The theoretical framework for a new fast search algorithm, Densely-Centered Uniform-P Search (DCUPS), is developed and presented in the book. The complexity of the DCUPS algorithm is comparable to other popular motion estimation techniques, however the algorithm shows superior results in terms of compression ratios and video qUality. We should stress out that these new results, presented in Chapters 4 and 5, have been developed by Joshua Greenberg, as part of his M.Sc. thesis entitled "Densely-Centered Uniform P-Search: A Fast Motion Estimation Algorithm" (FAU, 1996).
Physics of laser crystals has been constantly developing since the invention of the laser in 1960. Nowadays, more than 1500 wide-band-gap and semiconductors crystals are suitable for the production of the laser effect. Different laser devices are widely used in science, medicine and communication systems according to the progress achieved in the development of laser crystal physics. Scintillators for radiation detection also gained benefit from these developments. Most of the optically active materials offer laser radiations within the 500 to 3000 nm region with various quantum efficiency which fit the usual applications. However, new crystals for laser emissions are needed either in the blue, UV and VUV - region or far IR- region, especially for medicine, computer microchip production and for undiscovered practical uses. Scientific problems of the growth and properties of laser crystals are discussed in numerous books and scientific journals by many scientists working in the field. Therefore, we thought that joint discussions of the scientific and technical problems in laser physics will be useful for further developments in this area. We have proposed to held a Workshop on Physics of Laser Crystals for attempting to induce additional advances especially in solid state spectroscopy. This NATO Advanced Research Workshop (ARW) was hold in Kharkiv * Stary Saltov th nd (Ukraine) on august 26 - September 2 , 2002, and was mainly devoted to the consideration 0 f modem approaches and Iast results in physics of laser crystals.
This thesis deals with strongly luminescent lanthanide complexes having novel coordination structures. Luminescent lanthanide complexes are promising candidates as active materials for EL devices, lasers, and bio-sensing applications. The organic ligands in lanthanide complexes control geometrical and vibrational frequency structures that are closely related to the luminescent properties. In most of the previous work, however, lanthanide complexes have high-vibrational frequency C-H units close to the metal center for radiationless transition. In this thesis, the luminescent properties of lanthanide complexes with low-vibrational frequency C-F and P=O units are elucidated in terms of geometrical, vibrational, and chemical structures. The author also describes lanthanide coordination polymers with both high thermal stability (decomposition point > 300 DegreesC) and strong-luminescent properties (emission quantum yield > 80%). The author believes that novel studies on the characteristic structures and photophysical properties of lanthanide complexes may open up a frontier field in photophysical, coordination and material chemistry.
This book is intended for designers of military and civil systems, such as systems for guiding and control, target acquisition, surveillance, laser range-finding, fiber-optical communications, thermal imaging and the like, as well as for designers of photodetectors for optical signal detection. The first question they face is how to detect an ultimately weak optical signal. This book gives the answer to this most important question. All the main types of photodetectors are considered, from photodiodes (including avalanche photodiodes) to focal plane arrays (FPA). Methods of matching photodetectors with preamplifiers are described. The pair photodetector plus preamplifier is treated as an integrated detection system. Much attention is paid to different types of noise and ways of maximising the signal-to-noise ratio (SNR). Foundations of theory of optimal filtering of photosignals are discussed taking due account of typical shapes of optical signals and noise spectra. Methods for tuning quasi-optimal filters to maximise the SNR are explained. The main problems associated with detection of low-level optical signals are considered: operation of avalanche photodiodes in photon count mode, filtering in the case of charge accumulation in FPA cells, and the effect of the number of pixels and geometry of FPAs on detection. Finally, using the examples of the laser range finder and IR Imager, we give guidelines for calculating the limiting parameters of optoelectronic systems to achieve the highest possible SNR. The book is based on many years' experience by the author and his colleagues in the development of photodetectors and FPAs. The book is aimed at research workers, engineers, students andpostgraduates.
Chaotic Dynamics: Theory: Complexity, Control and Data Representation: Complexity and Unpredictable Scaling of Hierarchical Structures; R. Badii. Fractals, Multifractals, and Analyticity of Normal Forms: Multifractal Coding Measures in Dynamics; G. Mantica. Integrability, Painleve Property, and Singularity Analysis: Note on a Complex Eckhaus Equation; M.F. Jorgensen, et al.. Statistical Physics, Celestial Mechanics, and Cosmology: Phase Transitions Within the Fully Developed Regime; R. Kluiving. Chaotic Dynamics: Practice: Controlling Dynamical Systems: Feedback Control of Chaotic Systems; . Romeiras et al.. Semiconductors, Superconductors, Lasers, and Electronic Circuits: Chaotic Dynamics in Practice; E. Del Rio, et al . Biology, Chemistry, Atmospheric, and Magnetospheric Dynamics: Irregular Bursting in Model Neurones; J. Hyde. Hamiltonian Dynamics, Dissipative Dynamics, and Normal Forms. 30 additional articles. Index.
This volume is the eighth of a well-established series devoted to inelastic light scattering by solids, both as a physical effect and as a spectroscopic technique. It appears jointly with volume VII and can be considered to be its continuation. Emphasis is placed on fullerenes, Raman spectroscopy of semiconductors, surfaces, and interfaces, and coherent phonons. A survey of some of the progress in other aspects of Raman spectroscopy, in particular in the field of semiconductor nanostructures including the fractional quantum Hall effect, and in Raman spectroscopy of isotopically modified crystals rounds up the description of the present status of the field. It will be useful to advanced students and to all researchers who apply Raman spectroscopy in their work.
This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications.
In this book, three main notions will be used in the editors search of improvements in various areas of computer graphics: Artificial Intelligence, Viewpoint Complexity and Human Intelligence. Several Artificial Intelligence techniques are used in presented intelligent scene modelers, mainly declarative ones. Among them, the mostly used techniques are Expert systems, Constraint Satisfaction Problem resolution and Machine-learning. The notion of viewpoint complexity, that is complexity of a scene seen from a given viewpoint, will be used in improvement proposals for a lot of computer graphics problems like scene understanding, virtual world exploration, image-based modeling and rendering, ray tracing and radiosity. Very often, viewpoint complexity is used in conjunction with Artificial Intelligence techniques like Heuristic search and Problem resolution. The notions of artificial Intelligence and Viewpoint Complexity may help to automatically resolve a big number of computer graphics problems. However, there are special situations where is required to find a particular solution for each situation. In such a case, human intelligence has to replace, or to be combined with, artificial intelligence. Such cases, and proposed solutions are also presented in this book.
This book focuses on recent interconnected topics in nanophotonics written by scientists at the forefront of these fields. The book presents results of numerical investigations of light-matter interactions at the nanoscale and in the attosecond regime using first-principles calculations while also discussing recent experimental developments of higher-order harmonic generation for the field of attosecond science. In addition to this, the book reviews recent advances in select topical areas such as highly efficiency solid-state light sources based on nanophotonics, plasmonic photochemical water splitting for efficient energy harvesting, and optical spectroscopy of single-walled carbon nanotubes with quite rich physics for future application in photonics.
Speech Dereverberation gathers together an overview, a mathematical formulation of the problem and the state-of-the-art solutions for dereverberation. Speech Dereverberation presents current approaches to the problem of reverberation. It provides a review of topics in room acoustics and also describes performance measures for dereverberation. The algorithms are then explained with mathematical analysis and examples that enable the reader to see the strengths and weaknesses of the various techniques, as well as giving an understanding of the questions still to be addressed. Techniques rooted in speech enhancement are included, in addition to a treatment of multichannel blind acoustic system identification and inversion. The TRINICON framework is shown in the context of dereverberation to be a generalization of the signal processing for a range of analysis and enhancement techniques. Speech Dereverberation is suitable for students at masters and doctoral level, as well as established researchers.
This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.
This volume is devoted to presentation of new results of research on systems of non-integer order, called also fractional systems. Their analysis and practical implementation have been the object of spontaneous development for a few last decades. The fractional order models can depict a physical plant better than the classical integer order ones. This covers different research fields such as insulator properties, visco-elastic materials, electrodynamic, electrothermal, electrochemical, economic processes modelling etc. On the other hand fractional controllers often outperform their integer order counterparts. This volume contains new ideas and examples of implementation, theoretical and pure practical aspects of using a non-integer order calculus. It is divided into four parts covering: mathematical fundamentals, modeling and approximations, controllability, observability and stability problems and practical applications of fractional control systems. The first part expands the base of tools and methods of the mathematical basis for non-integer order calculus. Part two focuses on new methods and developments in process modeling and fractional derivatives approximations. In the third part a bunch of papers which raise problems of controllability, observability and stability of non-integer order systems is provided. Part four is devoted to presentation of different fractional order control applications. This book was created thanks to many experts in the field of fractional calculus: authors, anonymous referees whose comments allowed us to improve the final form of the papers and active and inspiring discussion of the participants of RRNR'2015, the 7th Conference on Non-Integer Order Calculus and Its Applications that was organized by the Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin, Poland.
Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers), coherent matter waves, Doppler-free Fourier spectroscopy, interference spectroscopy, quantum optics and gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.
Basically, the first edition was expanded and errors corrected. The aim re mains to provide a reference book for technical information. I would like to thank all my colleagues for constructive comments. Also, I acknowledge support by projects 13 EU 104 and EU 226 of the German Federal Ministry for Research and Technology. In addition, results from the project BE 7997, supported by the European Commission, have been in cluded. Specifically, I thank Dr. Petermann, Institut fur Laserphysik, University of Hamburg and Dr. Ackermann of the Research Institute in Idar-Oberstein for the proof-reading of Chap. 11 and 12, Dipl. Phys. Luft of Siemens AG, Regensburg for the constructive reading of Chap. 7, my colleagues S. Benz and Dr. Kronert of Heraeus Quarz-Schmelze, Hanau for checking Chap. 6, Dr. H.J. Hoffmann of Schott Glas, Mainz for looking at Chap. 4 and 13, and above all Prof. Dr. H. Weber of the Optical Institute, Technical University Berlin. Schramberg, January 2001 Reinhard Iffiander Preface to the German Edition This book was written during my work in the field of solid-state laser de velopment for material processing. The main emphasis therefore lies in the compilation of physical and technical fundamentals of these lasers. The purpose of this book is to provide a specialized introduction to the field for engineers and technicians. It is not intended as a substitute for more detailed textbooks and specialized literat ure The bibliography gives details of many textbooks in the field of study."
The book provides a collection of selected papers presented to the third International Conference on Photonics, Optics and Laser Technology PHOTOPTICS 2015, covering the three main conference scientific areas of "Optics", "Photonics" and "Lasers". The selected papers, in two classes full and short, result from a double blind review carried out by the conference program committee members which are highly qualified experts in conference topic areas. |
![]() ![]() You may like...
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,545
Discovery Miles 55 450
Fundamentals of Femtosecond Optics
S. A. Kozlov, V.V. Samartsev
Hardcover
R3,263
Discovery Miles 32 630
Modern Luminescence from Fundamental…
Surender Kumar Sharma, Carlos Jacinto da Silva, …
Paperback
R5,914
Discovery Miles 59 140
|