![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Hardbound. This volume contains six review articles dealing with topics of current research interest in optics and in related fields.The first article deals with the so-called embedding method, which has found many useful applications in the study of wave propagation in random media. The second article presents a review of an interesting class of non-linear optical phenomena which have their origin in the dependence of the complex dielectric constant of some media on the light intensity. These phenomena which include self-focusing, self-trapping and self-modulation have found many applications, for example in fiber optics devices, signal processing and computer technology. The next article is concerned with gap solitons which are electromagnetic field structures which can exist in nonlinear media that have periodic variation in their linear optical properties, with periodicities of the order of the wavelength of light. Both qualitative and quantitative
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.
This book presents advances in biomedical imaging analysis and processing techniques using time dependent medical image datasets for computer aided diagnosis. The analysis of time-series images is one of the most widely appearing problems in science, engineering, and business. In recent years this problem has gained importance due to the increasing availability of more sensitive sensors in science and engineering and due to the wide-spread use of computers in corporations which have increased the amount of time-series data collected by many magnitudes. An important feature of this book is the exploration of different approaches to handle and identify time dependent biomedical images. Biomedical imaging analysis and processing techniques deal with the interaction between all forms of radiation and biological molecules, cells or tissues, to visualize small particles and opaque objects, and to achieve the recognition of biomedical patterns. These are topics of great importance to biomedical science, biology, and medicine. Biomedical imaging analysis techniques can be applied in many different areas to solve existing problems. The various requirements arising from the process of resolving practical problems motivate and expedite the development of biomedical imaging analysis. This is a major reason for the fast growth of the discipline.
This book provides an overview of positioning technologies, applications and services in a format accessible to a wide variety of readers. Readers who have always wanted to understand how satellite-based positioning, wireless network positioning, inertial navigation, and their combinations work will find great value in this book. Readers will also learn about the advantages and disadvantages of different positioning methods, their limitations and challenges. Cognitive positioning, adding the brain to determine which technologies to use at device runtime, is introduced as well. Coverage also includes the use of position information for Location Based Services (LBS), as well as context-aware positioning services, designed for better user experience.
This book describes a circuit architecture for converting real analog signals into a digital format, suitable for digital signal processors. This architecture, referred to as multi-stage noise-shaping (MASH) Continuous-Time Sigma-Delta Modulators (CT- M), has the potential to provide better digital data quality and achieve better data rate conversion with lower power consumption. The authors not only cover MASH continuous-time sigma delta modulator fundamentals, but also provide a literature review that will allow students, professors, and professionals to catch up on the latest developments in related technology.
A key element of any modern video codec is the efficient exploitation of temporal redundancy via motion-compensated prediction. In this book, a novel paradigm of representing and employing motion information in a video compression system is described that has several advantages over existing approaches. Traditionally, motion is estimated, modelled, and coded as a vector field at the target frame it predicts. While this "prediction-centric" approach is convenient, the fact that the motion is "attached" to a specific target frame implies that it cannot easily be re-purposed to predict or synthesize other frames, which severely hampers temporal scalability. In light of this, the present book explores the possibility of anchoring motion at reference frames instead. Key to the success of the proposed "reference-based" anchoring schemes is high quality motion inference, which is enabled by the use of a more "physical" motion representation than the traditionally employed "block" motion fields. The resulting compression system can support computationally efficient, high-quality temporal motion inference, which requires half as many coded motion fields as conventional codecs. Furthermore, "features" beyond compressibility - including high scalability, accessibility, and "intrinsic" framerate upsampling - can be seamlessly supported. These features are becoming ever more relevant as the way video is consumed continues shifting from the traditional broadcast scenario to interactive browsing of video content over heterogeneous networks. This book is of interest to researchers and professionals working in multimedia signal processing, in particular those who are interested in next-generation video compression. Two comprehensive background chapters on scalable video compression and temporal frame interpolation make the book accessible for students and newcomers to the field.
"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Science and Engineering, Lanzhou University, China.
A timely and comprehensive survey, Excimer Laser Technology reports on the current status and range of the underlying technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology.
A careful review of the literature covering various aspects of applications of lasers in science and technology reveals that lasers are being applied very widely throughout the entire gamut of physical medicine. After surveying the current developments taking place in the field of medical applications of lasers, it was considered appropriate to bring together these efforts of international research scientists and experts into one volume. It is with this aim that the editors have prepared this volume which brings current research and recent developments to the attention of a wide spectrum of readership associated with hospitals, medical institutions and universities world wide, including also the medical instrument industry. Both teachers and students in the medical faculties will especially find this compendium quite useful. This book is comprised of eleven chapters. All of the important medical applications of lasers are featured. The editors have made every effort that individual chapters are self-contained and written by experts. Emphasis has been placed on straight and simple presentation of the subject matter so that even the new entrants into the field will find the book of value.
This book covers the latest advances in the techniques employed to manage the THz radiation and its potential uses. It has been subdivided in three sections: THz Detectors, THz Sources, Systems and Applications. These three sections will allow the reader to be introduced in a logical way to the physics problems of sensing and generation of the terahertz radiation, the implementation of these devices into systems including other components and finally the exploitation of the equipment for real applications in some different field. All of the sections and chapters can be individually addressed in order to deepen the understanding of a single topic without the need to read the whole book. The THz Detectors section will address the latest developments in detection devices based on three different physical principles: photodetection, thermal power detection, rectification. The THz Sources section will describe three completely different generation methods, operating in three separate scales: quantum cascade lasers, free electron lasers and non-linear optical generation. The Systems and Applications section will take care of introducing many of the aspects needed to move from a device to an equipment perspective: control of terahertz radiation, its use in imaging or in spectroscopy, potential uses in security, and will address also safety issues. The text book is at a level appropriate to graduate level courses up to researchers in the field who require a reference book covering all aspects of terahertz technology.
The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialists view from different domains to the forthcoming "single-photon imaging" revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields.
There is a consistent trend towards miniaturization of deviees and systems in many fields of engineering, in order to achieve significant reductions in size, weight, power consumption and cost. This trend is especially evident in optics and optoelectronics, where recent years have seen rapid growth in such new or renewed areas as rnicrooptics, integrated optics, integrated optoelectronics, and diffractive optics. In November 1996, an international group of scientists convened in Eriee, Sicily, for a meeting on the subject of "Diffractive Opties and Optieal Mierosystems." This Conference was the 20th Course of the International School of Quantum Electronies, under the auspices of the "Ettore Majorana Center for Scientific Culture" and was directed by Prof. Franeo Gori of the Third University of Rome, Italy, and Prof. Giancarlo Righini of the "Nello Carrara" Institute of Research on Electromagnetic Waves (IROE-CNR) in Florence, Italy. This book presents the Proceedings of this Conference, providing a fundamental introduction to the topie as weIlas reports on recent research results.
The free electron laser (FEL) will be an outstanding tool for research and industrial application. This book describes the physical fundamentals on the basis of classical mechanics, electrodynamics, and the kinetic theory of charged particle beams, and will be suitable for graduate students and scientists alike.After a short introduction, the book discusses the theory of the FEL amplifier and oscillator and diffraction effects in the amplifier. Waveguide FEL and shot noise are also treated.
The book explores various aspects of existing and emerging fiber and waveguide optics sensing and imaging technologies including recent advances in nanobiophotonics. The focus is both on fundamental and applied research as well as on applications in civil engineering, biomedical sciences, environment, security and defence. The main goal of the multi-disciplinary team of Editors was to provide a useful reference of state-of-the-art overviews covering a variety of complementary topics on the interface of engineering and biomedical sciences.
Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction.
Digital Functions and Data Reconstruction: Digital-Discrete Methods provides a solid foundation to the theory of digital functions and its applications to image data analysis, digital object deformation, and data reconstruction. This new method has a unique feature in that it is mainly built on discrete mathematics with connections to classical methods in mathematics and computer sciences. Digitally continuous functions and gradually varied functions were developed in the late 1980s. A. Rosenfeld (1986) proposed digitally continuous functions for digital image analysis, especially to describe the "continuous" component in a digital image, which usually indicates an object. L. Chen (1989) invented gradually varied functions to interpolate a digital surface when the boundary appears to be continuous. In theory, digitally continuous functions are very similar to gradually varied functions. Gradually varied functions are more general in terms of being functions of real numbers; digitally continuous functions are easily extended to the mapping from one digital space to another. This will be the first book about digital functions, which is an important modern research area for digital images and digitalized data processing, and provides an introduction and comprehensive coverage of digital function methods. Digital Functions and Data Reconstruction: Digital-Discrete Methods offers scientists and engineers who deal with digital data a highly accessible, practical, and mathematically sound introduction to the powerful theories of digital topology and functional analysis, while avoiding the more abstruse aspects of these topics.
This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.
This book offers a comprehensive introduction to advanced methods for image and video analysis and processing. It covers deraining, dehazing, inpainting, fusion, watermarking and stitching. It describes techniques for face and lip recognition, facial expression recognition, lip reading in videos, moving object tracking, dynamic scene classification, among others. The book combines the latest machine learning methods with computer vision applications, covering topics such as event recognition based on deep learning,dynamic scene classification based on topic model, person re-identification based on metric learning and behavior analysis. It also offers a systematic introduction to image evaluation criteria showing how to use them in different experimental contexts. The book offers an example-based practical guide to researchers, professionals and graduate students dealing with advanced problems in image analysis and computer vision.
This book initiates a new digital multimedia standards series. The purpose of the series is to make information about digital multimedia standards readilyavailable. Both tutorial and advanced topics will be covered in the series, often in one book. Our hope is that users will find the series helpful in deciding what standards to support and use while implementors will d- cover a wealth of technical details that help them implement those standards correctly. In today's global economy standards are increasingly important. Yet until a standard is widely used, most of the benefits of standardization are not realized. We hope that standards committee chairpeople will organize and encourage a book in this series devoted to their new standard. This can be a forum to share and preserve some ofthe "why" and "how" that went into the development of the standard and, in the process, assist in the rapid adoption of the standard. Already in production for this series are books titled Digital Video: - troduction to MPEG-2 and Data Compression in Digital Systems.
Global Navigation Satellite Systems (GNSS), such as GPS, have become an efficient, reliable and standard tool for a wide range of applications. However, when processing GNSS data, the stochastic model characterising the precision of observations and the correlations between them is usually simplified and incomplete, leading to overly optimistic accuracy estimates. This work extends the stochastic model using signal-to-noise ratio (SNR) measurements and time series analysis of observation residuals. The proposed SNR-based observation weighting model significantly improves the results of GPS data analysis, while the temporal correlation of GPS observation noise can be efficiently described by means of autoregressive moving average (ARMA) processes. Furthermore, this work includes an up-to-date overview of the GNSS error effects and a comprehensive description of various mathematical methods.
The contributions in this volume were presented at a NATO
Advanced Study Institute held in Erice, Italy, 4-19 July 2013. Many
aspects of important research into nanophotonics, plasmonics,
semiconductor materials and devices, instrumentation for bio
sensing to name just a few, are covered in depth in this volume.
The growing connection between optics and electronics, due to the
increasing important role plaid by semiconductor materials and
devices, find their expression in the term photonics, which also
reflects the importance of the photon aspect of light in the
description of the performance of several optical systems.
Nano-structures have unique capabilities that allow the enhanced
performance of processes of interest in optical and photonic
devices. In particular these structures permit the nanoscale
manipulation of photons, electrons and atoms; they represent a very
hot topic of research and are relevant to many devices and
applications.
This book presents an in-depth discussion of the semiconductor-laser gain medium. The optical and electronic properties of semiconductors, particularly semiconductor quantum-well systems, are analzyed in detail, covering a wide variety of near-infrared systems with or without strain, as well as wide-gap materials such as the group-III nitride compounds or the II-VI materials. The important bandstructure modifications and Coulomb interaction effects are discussed, including the solution of the longstanding semiconductor laser lineshape problem. Quantitative comparisons between measured and predicted gain/absorption and refractive index spectra for a wide variety of semiconductor-laser materials enable the theoretical results to be used directly in the engineering of advanced laser and amplifier structures. A wealth of examples for many different material combinations bestow the book with quantitative and predictive value for a wide variety of applications.
For more than a century, microscopy has been a centerpiece of extraordinary discoveries in biology. Along the way, remarkable imaging tools have been developed allowing scientists to dissect the complexity of cellular processes at the nano length molecular scales. Nanoimaging: Methods and Protocols presents a diverse collection of microscopy techniques and methodologies that provides guidance to successfully image cellular molecular complexes at nanometer spatial resolution. The book's four parts cover: (1) light microscopy techniques with a special emphasis on methods that go beyond the classic diffraction-limited imaging; (2) electron microscopy techniques for high-resolution imaging of molecules, cells and tissues, in both two and three dimensions; (3) scanning probe microscopy techniques for imaging and probing macromolecular complexes and membrane surface topography; and (4) complementary techniques on correlative microscopy, soft x-ray tomography and secondary ion mass spectrometry imaging. Written in the successful format of the Methods in Molecular Biology (TM) series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Nanoimaging: Methods and Protocols highlights many of the most exciting possibilities in microscopy for the investigation of biological structures at the nano length molecular scales. |
You may like...
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
Fundamentals of Femtosecond Optics
S. A. Kozlov, V.V. Samartsev
Hardcover
R3,072
Discovery Miles 30 720
Infrared Thermography in the Evaluation…
Carosena Meola, Simone Boccardi, …
Hardcover
R3,497
Discovery Miles 34 970
|