![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Authored by the developer of dressed photon science and technology as well as nanophotonics, this book outlines concepts of the subject using a novel theoretical framework that differs from conventional wave optics. It provides a quantum theoretical description of optical near fields and related problems that puts matter excitation such as electronic and vibrational ones on an equal footing with photons. By this description, optical near fields are interpreted as quasi-particles and named dressed photons which carry the material excitation energy in a nanometric space. The author then explores novel nanophotonic devices, fabrications, and energy conversion based on the theoretical picture of dressed photons. Further, this book looks at how the assembly of nanophotonic devices produces information and communication systems. Dressed photon science and technology is on its way to revolutionizing various applications in devices, fabrications, and systems. Promoting further exploration in the field, this book presents physically intuitive concepts, theories, and technical details for students, engineers, and scientists engaged in research and development in dressed photon science and technology as well as nanophotonics.
This book describes the latest advances in pulse signal analysis and their applications in classification and diagnosis. First, it provides a comprehensive introduction to useful techniques for pulse signal acquisition based on different kinds of pulse sensors together with the optimized acquisition scheme. It then presents a number of preprocessing and feature extraction methods, as well as case studies of the classification methods used. Lastly it discusses some promising directions for the future study and clinical applications of pulse signal analysis. The book is a valuable resource for researchers, professionals and postgraduate students working in the field of pulse diagnosis, signal processing, pattern recognition and biometrics. It is also useful for those involved in interdisciplinary research.
The PUILS series presents Progress in Ultrafast Intense Laser Science. This third volume in the series covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.
* The only book describing applications of nonlinear fiber optics
This book will address the advances, applications, research results, and emerging areas of optics, photonics, computational approaches, nano-photonics, bio-photonics, with applications in information systems. The objectives are to bring together novel approaches, analysis, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information. The book will concentrate on new approaches to information systems, including integration of computational algorithms, bio-inspired models, photonics technologies, information security, bio-photonics, and nano-photonics. Applications include bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on nano-scale, quantum optics, super resolution imaging, photonics for biological applications, microscopy, information optics, and holographic information systems.
THis book shows you the principles of operation, device structure, noise properties, and a wide range of possible application systems of semiconductor lasers, and describes methods for improving their coherence. Supported by 300 equations and 169 illustrations.
This book describes a new type of passive electronic components, called fractal elements, from a theoretical and practical point of view. The authors discuss in detail the physical implementation and design of fractal devices for application in fractional-order signal processing and systems. The concepts of fractals and fractal signals are explained, as well as the fundamentals of fractional calculus. Several implementations of fractional impedances are discussed, along with comparison of their performance characteristics. Details of design, schematics, fundamental techniques and implementation of RC-based fractal elements are provided.
"Advances in Imaging and Electron Physics" merges two long-running
serials-Advances in Electronics and Electron Physics and Advances
in Optical and Electron Microscopy. This series features extended
articles on the physics of electron devices (especially
semiconductor devices), particle optics at high and low energies,
microlithography, image science and digital image processing,
electromagnetic wave propagation, electron microscopy, and the
computing methods used in all these domains.
Hyperspectral Image Fusion is the first text dedicated to the fusion techniques for such a huge volume of data consisting of a very large number of images. This monograph brings out recent advances in the research in the area of visualization of hyperspectral data. It provides a set of pixel-based fusion techniques, each of which is based on a different framework and has its own advantages and disadvantages. The techniques are presented with complete details so that practitioners can easily implement them. It is also demonstrated how one can select only a few specific bands to speed up the process of fusion by exploiting spatial correlation within successive bands of the hyperspectral data. While the techniques for fusion of hyperspectral images are being developed, it is also important to establish a framework for objective assessment of such techniques. This monograph has a dedicated chapter describing various fusion performance measures that are applicable to hyperspectral image fusion. This monograph also presents a notion of consistency of a fusion technique which can be used to verify the suitability and applicability of a technique for fusion of a very large number of images. This book will be a highly useful resource to the students, researchers, academicians and practitioners in the specific area of hyperspectral image fusion, as well as generic image fusion.
The safety of vehicle traffic depends on how well automotive lighting supports the visual perception of the driver. This book explains the fundamentals of visual perception, like e.g. physiology of eye and brain, as well as those of automotive lighting technology, like e.g. design of headlamps and signal lights. It is an interdisciplinary approach to a rapidly evolving field of science and technology written by a team of authors who are experts in their fields.
This book describes a new way to design and utilize Instrumentation Amplifiers (IAs) by taking advantages of the current-mode (CM) approach. For the first time, all different topologies of CMIAs are discussed and compared, providing a single-source reference for instrumentation and measurement experts who want to choose a topology for a specific application. The authors also explain major challenges in designing CMIAs, so the book can be useful for anyone studying instrumentation amplifiers, and even other analog circuits. Coverage also includes various CM signal processing techniques employed in CMIAs, and applications of the CMIAs in biomedical and data acquisition are demonstrated.
"Signal Conditioning" is a comprehensive introduction to electronic signal processing. The book presents the mathematical basics including the implications of various transformed domain representations in signal synthesis and analysis in an understandable and lucid fashion and illustrates the theory through many applications and examples from communication systems. The ease to learn is supported by well-chosen exercises which give readers the flavor of the subject. Supplementary electronic material is available on http://extras.springer.com including MATLAB codes illuminating applications in the domain of one dimensional electrical signal processing, image processing, and speech processing. The book is an introduction for students with a basic understanding in engineering or natural sciences.
During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry. A large number of researchers, including computer scientists and engineers, have been interested in solving challenging problems that span all the layers of the protocol stack of sensor networking systems. Several venues, such as journals, conferences, and workshops, have been launched to cover innovative research and practice in this promising and rapidly advancing field. Because of these trends, I thought it would be beneficial to provide our sensor networks community with a comprehensive reference on as much of the findings as possible on a variety of topics in wireless sensor networks. As this area of research is in continuous progress, it does not seem to be a reasonable solution to keep delaying the publication of such reference any more. This book relates to the second volume and focuses on the advanced topics and applications of wireless sensor networks. Our rationale is that the second volume has all application-specific and non-conventional sensor networks, emerging techniques and advanced topics that are not as matured as what is covered in the first volume. Thus, the second volume deals with three-dimensional, underground, underwater, body-mounted, and societal networks. Following Donald E. Knuth's above-quoted elegant strategy to focus on several important fields (The Art of Computer Programming: Fundamental Algorithms, 1997), all the book chapters in this volume include up-to-date research work spanning various topics, such as stochastic modeling, barrier and spatiotemporal coverage, tracking, estimation, counting, coverage and localization in three-dimensional sensor networks, topology control and routing in three-dimensional sensor networks, underground and underwater sensor networks, multimedia and body sensor networks, and social sensing. Most of these major topics can be covered in an advanced course on wireless sensor networks. This book will be an excellent source of information for graduate students majoring in computer science, computer engineering, electrical engineering, or any related discipline. Furthermore, computer scientists, researchers, and practitioners in both academia and industry will find this book useful and interesting.
This book covers up-to-date methods and algorithms for the automated analysis of engineering drawings and digital cartographic maps. The Non-Deterministic Agent System (NDAS) offers a parallel computational approach to such image analysis. The book describes techniques suitable for persistent and explicit knowledge representation for engineering drawings and digital maps. It also highlights more specific techniques, e.g., applying robot navigation and mapping methods to this problem. Also included are more detailed accounts of the use of unsupervised segmentation algorithms to map images. Finally, all these threads are woven together in two related systems: NDAS and AMAM (Automatic Map Analysis Module).
The three volumes VIII/1A, B, C document the state of the art of Laser Physics and Applications . Scientific trends and related technological aspects are considered by compiling results and conclusions from phenomenology, observation and experiments. Reliable data, physical fundamentals and detailed references are presented. In the recent decades the laser source matured to an universal tool common to scientific research as well as to industrial use. Today the main technical goal is the generation of optical power towards shorter wavelengths, shorter pulses, higher efficiency and higher power for applications in science and industry. Tailoring the optical energy in wavelength, space and time is a requirement for the investigation of laser-induced processes, i.e. excitation, non-linear amplification, storage of optical energy, etc. According to the actual trends in laser research and development, Vol. VIII/1 is split into three parts: Vol. VIII/1A with its two subvolumes 1A1 and 1A2 covers laser fundamentals, Vol. VIII/1B with its three subvolumes 1B1, 1B2 and 1B3 deals with laser systems and Vol. VIII/1C gives an overview on laser applications.
This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).
This thesis focuses on two areas - the development of miniature plastic lasers that can be powered by LEDs, and the application of these lasers as highly sensitive sensors for vapours of nitroaromatic explosives (e.g. TNT). Polymer lasers are extremely compact visible lasers; the research described in the thesis is groundbreaking, driving forward the technology and physical understanding to allow these lasers to be routinely pumped by a single high-power LED. A notable advance in the work is the demonstration of nanoimprinted polymer lasers, which exhibit the world's lowest pump threshold densities by two orders of magnitude. The thesis also advances the application of these compact, novel lasers as highly sensitive detectors of explosive vapours, demonstrating that rapid detection can be achieved when microporous polymers are used. This work also demonstrates a prototype CMOS-based microsystem sensor for explosive vapours, exploiting a new detection approach.
There is a wide field of tasks left that can only be satisfyingly attacked with the help of old-fashioned analogue technology, and one of the most important are amplifiers for analogue signals. The strongly expanded content of the second edition of "the sound of silence" leads to affordable amplifier design approaches which will end up in lowest-noise solutions not far away from the edge of physical boundaries set by room temperature and given cartridges - thus, fully compatible with very expensive so called "high-end" or "state-of-the-art" offers on today markets - and, from a noise point of view in most cases outperforming them With easy to follow mathematical treatment it is demonstrated as well that theory is not far away from reality. Measured SNs will be found within 1dB off the calculated ones and deviations from the exact amplifier transfer won't cross the 0.1dB tolerance lines. Additionally, the book presents measurement set-ups and results. Consequently, comparisons with measurement results of test magazine will soon become easier to perform. This new edition includes a new chapters about reference levels, Noise in Amp Input sections, Humming Problems, and much more."
The book discusses intelligent system design using soft computing and similar systems and their interdisciplinary applications. It also focuses on the recent trends to use soft computing as a versatile tool for designing a host of decision support systems.
Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. "Quantum Dot Devices" is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source."
Nanophotonics, a novel optical technology, utilizes the local interaction between nanometric particles via optical near fields. The optical near fields are the elementary surface excitations on nanometric particles, i.e. dressed photons that carry material energy. Of the variety of qualitative innovations in optical technology realized by nanophotonics, this books focuses on fabrication. To fabricate nano-scale photonic devices with nanometer-scale controllability in size and position, we developed a self-assembly method for size- and position-controlled ultra-long nanodot chains using a novel effect of near-field optical desorption. A novel deposition and etching scheme under nonresonant conditions is also demonstrated and its origin is reviewed.
This third volume in the series represents the Proceedings of the
3rd International Nanophotonics Symposium, July 6-8, 2006,
Icho-Kaikan, Osaka University, Osaka, Japan. Over a two-day
symposium, distinguished scientists from around the world convened
to discuss the latest progress in this field and the conclusions
have been summarised in Nano Biophotonics: Science and Technology.
The contents of this book have been compiled by invited lecturers,
research members of the relevant projects/program, and some of
general participants. The book has 27 chapters which are classified
into 4 parts; nano bio-spectroscopy, nano bio-dynamics, nano
bio-processing, and nano bio-devices.
The most recent design and system applications of OF amplifiers are comprehensively described in this detailed book. With specific focus on the latest telecommunication engineering issues, it reviews all significant properties of optical fiber amplifiers and presents highly accurate models for erbium-, neodymium-, and praseodymium- doped fiver amplifiers. |
You may like...
Interactive Graphics for Data Analysis…
Martin Theus, Simon Urbanek
Paperback
R1,870
Discovery Miles 18 700
Sparse Graphical Modeling for High…
Faming Liang, Bochao Jia
Hardcover
R2,643
Discovery Miles 26 430
80 Years of Research at the Philips…
Jan Korsten, Marc Vries
Paperback
R1,402
Discovery Miles 14 020
Computing in Algebraic Geometry - A…
Wolfram Decker, Christoph Lossen
Hardcover
R1,588
Discovery Miles 15 880
Gene Expression Data Analysis - A…
Pankaj Barah, Dhruba Kumar Bhattacharyya, …
Hardcover
R4,094
Discovery Miles 40 940
Nonlinear Kalman Filter for Multi-Sensor…
Jean-Philippe Condomines
Hardcover
R2,578
Discovery Miles 25 780
|