![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Computational Intelligence in Biomedical Imaging is a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients' medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians' decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational intelligence in computer-aided diagnosis, biological image analysis, and computer-aided surgery and therapy.
This book highlights technology trends and challenges that trace the evolution of antenna design, starting from 3rd generation phones and moving towards the latest release of LTE-A. The authors explore how the simple monopole and whip antenna from the GSM years have evolved towards what we have today, an antenna design that is compact, multi-band in nature and caters to multiple elements on the same patch to provide high throughput connectivity. The scope of the book targets a broad range of subjects, including the microstrip antenna, PIFA antenna, and the monopole antenna to be used for different applications over three different mobile generations. Beyond that, the authors take a step into the future and look at antenna requirements for 5G communications, which already has the 5G drive in place with prominent scenarios and use-cases emerging. They examine these, and put in place the challenges that lie ahead for antenna design, particularly in mm-Wave design. The book provides a reference for practicing engineers and under/post graduate students working in this field.
A comprehensive device model considering both spatial distributions of the terahertz field and the field-effect self-mixing factor has been constructed for the first time in the thesis. The author has found that it is the strongly localized terahertz field induced in a small fraction of the gated electron channel that plays an important role in the high responsivity. An AlGaN/GaN-based high-electron-mobility transistor with a 2-micron-sized gate and integrated dipole antennas has been developed and can offer a noise-equivalent power as low as 40 pW/Hz1/2 at 900 GHz. By further reducing the gate length down to 0.2 micron, a noise-equivalent power of 6 pW/Hz1/2 has been achieved. This thesis provides detailed experimental techniques and device simulation for revealing the self-mixing mechanism including a scanning probe technique for evaluating the effectiveness of terahertz antennas. As such, the thesis could be served as a valuable introduction towards further development of high-sensitivity field-effect terahertz detectors for practical applications.
This thesis describes novel approaches and implementation of high-resolution microscopy in the extreme ultraviolet light regime. Using coherent ultrafast laser-generated short wavelength radiation for illuminating samples allows imaging beyond the resolution of visible-light microscopes. Michael Zurch gives a comprehensive overview of the fundamentals and techniques involved, starting from the laser-based frequency conversion scheme and its technical implementation as well as general considerations of diffraction-based imaging at nanoscopic spatial resolution. Experiments on digital in-line holography and coherent diffraction imaging of artificial and biologic specimens are demonstrated and discussed in this book. In the field of biologic imaging, a novel award-winning cell classification scheme and its first experimental application for identifying breast cancer cells are introduced. Finally, this book presents a newly developed technique of generating structured illumination by means of so-called optical vortex beams in the extreme ultraviolet regime and proposes its general usability for super-resolution imaging.
This thesis focuses on the fundamental problem of characterising partially coherent beams. The book describes several non-interferometric methods based on phase-space tomography for recovering the spatial coherence information of optical beams. In the context of optical beams, partially coherent light provides numerous advantages over coherent light. From microscopy to optical communications, there are many disciplines that benefit from using partially coherent beams. However, their range of applications currently remains limited due to the complexity of extracting information. In addition to providing a feasible experimental solution for the general case, the book explores several situations in which beam symmetries are exploited to simplify the information extraction process. Each characterisation method is accompanied by a corresponding theoretical explanation and a thorough description of experimental examples.
Blind deconvolution is a classical image processing problem which has been investigated by a large number of researchers over the last four decades. The purpose of this monograph is not to propose yet another method for blind image restoration. Rather the basic issue of deconvolvability has been explored from a theoretical view point. Some authors claim very good results while quite a few claim that blind restoration does not work. The authors clearly detail when such methods are expected to work and when they will not. In order to avoid the assumptions needed for convergence analysis in the Fourier domain, the authors use a general method of convergence analysis used for alternate minimization based on three point and four point properties of the points in the image space. The authors prove that all points in the image space satisfy the three point property and also derive the conditions under which four point property is satisfied. This provides the conditions under which alternate minimization for blind deconvolution converges with a quadratic prior. Since the convergence properties depend on the chosen priors, one should design priors that avoid trivial solutions. Hence, a sparsity based solution is also provided for blind deconvolution, by using image priors having a cost that increases with the amount of blur, which is another way to prevent trivial solutions in joint estimation. This book will be a highly useful resource to the researchers and academicians in the specific area of blind deconvolution.
The book aims to describe the microscopic characterization of the soft matter in the light of new advances acquired in the science of microscopy techniques like AFM; SEM; TEM etc. It does not focus on the traditional information on the microscopy methods as well as systems already present in different books, but intends to answer more fundamental questions associated with commercially important systems by using new advances in microscopy. Such questions are generally not answered by other techniques. The contents of the book also reflect this as the chapters are not based on describing only material systems, but are based on the answering the problems or questions arising in their characterization. Both qualitative as well as quantitative analysis using such microscopic techniques is discussed. Moreover, efforts have been made to provide a broader reach as discussions on both polymers as well as biological matter have been included as different sections. Such a text with comprehensive overview of the various characterization possibilities using microscopy methods can serve as a valuable reference for microscopy experts as well as non-experts alike
Focusing on connection technologies used for both single-mode and multimode fibers, this book explains multifiber connections such as mass-fusion splice and multifiber connectors. Information on fluoride glass fibers, doped fibers (EDFA), and components is included.
This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.
Lasers have a wide and growing range of applications in medicine.
Lasers for Medical Applications summarises the wealth of recent
research on the principles, technologies and application of lasers
in diagnostics, therapy and surgery.
This book is focused on the Internet of Things (IoT) services and smart environments that can be of assistance to the elderly and individuals living with dementia or some sensory impairment. The book outlines the requirements of the systems that aim to furnish some digital sensory or cognitive assistance to the individuals and their caregivers. Internet of Things and Smart Environments: Assistive Technologies for Disability, Dementia, and Aging covers the important evolutions of the IoT, the sensors, actuators, wireless communication and pervasive computing systems, and other enabling technologies that power up this megatrend infrastructure. The use of the IoT-based systems in improving the conventional assistive technologies and provisions of ambient assisted living are also covered. The book takes an impartial, and yet holistic, view to providing research insights and inspirations for more development works in the areas related to assistive IoT. It will show the potentials of using normally available interactive devices, like smartphones or smart TVs, which can be supplemented with low-cost gadgets or apps to provide assistive capabilities. It aims to accentuate the need for taking a comprehensive and combinatory view of the comprising topics and approaches that are based on the visions and ideas from all stakeholders. The book will examine these points and considerations to conclude with recommendations for future development works and research directions. This book can be of value to a diverse array of audience. The researchers and developers in healthcare and medicine, aged care and disability services, as well as those working in the IoT-related fields, may find many parts of this book useful and stimulating. It can be of great value to postgraduate and research students working in these areas. It can also be adapted for use in upper-level classroom courses relevant to communication and smart technologies, IoT applications, and assistive technologies. Many parts of the book can be of interest to the elderly and individuals living with a disability, as well as their families and caregivers. From an industry perspective, it can be of interest to software, hardware, and particularly app developers working on the IoT applications, smart homes and environments, and assistive technologies for the elderly and people living with disability or dementia.
This book discusses opportunities for broadcasters that arise with the advent of broadband networks, both fixed and mobile. It discusses how the traditional way of distributing audio-visual content over broadcasting networks has been complemented by the usage of broadband networks. The author shows how this also gives the possibility to offer new types of interactive or so-called nonlinear services. The book illustrates how change in distribution technology is accelerating the need for broadcasters around the world to adapt their content distribution strategy and how it will impact the portfolios of content they offer.
This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.
This book investigates the physical layer aspects of high-speed transmission on twisted-pair copper wires, where the most performance-critical components are multi-input multi-output (MIMO) precoding and multi-line spectrum optimization as well as optimized scheduling of the transmission time slots on the fiber to the distribution point (FTTdp) copper link. The book brings theoretical results into the implementation, which requires the introduction of realistic channel models and more practical implementation constraints as found in the copper access network. A good understanding of the transmission medium, twisted-pair telephone cable bundles is the basis for this work. Starting from the analysis of measurement data from twisted-pair cable bundles at high frequencies, it presents a MIMO channel model for the FTTdp network, which allows the characteristic effects of high-frequency transmission on copper cable bundles in simulation to be reproduced and the physical layer transmission methods on the copper channels to be analyzed and optimize. The book also presents precoding optimization for more general power constraints and implementation constraints. The maximization of data rate in a transmission system such as G.fast or VDSL is a combinatorial problem, as the rate is a discrete function of the number of modulated bits. Applying convex optimization methods to the problem offers an efficient and effective solution approach that is proven to operate close to the capacity of the FTTdp channel. In addition to higher data rates, low power consumption is another important aspect of the FTTdp network, as it requires many access nodes that are supplied with power from the subscriber side over the twisted- pair copper wires. Discontinuous operation is a method of quickly adding and removing lines from the precoding group. To implement this, the system switches between different link configurations over time at a high frequency. The transmission times of all lines are jointly optimized with respect to the current rate requirements. Discontinuous operation is used to save power, but also makes it possible to further increase the data rates, taking the current subscriber traffic requirements into account. These methods are compared with theoretical upper bounds, using realistic channel models and conditions of a system implementation. The performance analysis provides deeper insights into implementation complexity trade-offs and the resulting gap to channel capacity.
Here's a complete and up-to-date introduction to the analysis and design of infrared and electro-optical (EO) imaging systems. This comprehensive reference details the principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems and shows you how to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, engineers and program managers become capable of predicting both sensor test and field performance and quantifying the effects of component variations. "Introduction to Infrared and Electro-Optical Systems" contains over 500 equations.
This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. The surface plasmon polaritons (SPPs) are then treated, highlighting their potential applications also in ultra-compact circuitry. The book concludes with a discussion of the quantization of evanescent waves and quantum information processing. The book is intended for students and researchers who wish to enter the field or to have some insight into the matter. It is not a textbook but simply an introduction to more complete and in-depth discussions. The field of plasmonics has exploded in the last ten years, and most of the material treated in this book is scattered in original or review papers. A short comprehensive treatment is missing; this book is intended to provide just that.
This comprehensive text collects the progress made in recent years in the fabrication, processing, and performance of organic nanophotonic materials and devices. The first part of the book addresses photonic nanofabrications in a chapter on multiphoton processes in nanofabrication and microscopy imaging. The second part of the book is focused on nanoscale light sources for integrated nanophotonic circuits, and is composed of three chapters on organic nano/microcavities, organic laser materials, and polymer light-emitting electrochemical cells (LECs). The third part is focused on the interactions between light and matter and consists in three chapters, including the propagation of light in organic nanostructures and photoswitches based on nonlinear optical polymer photonic crystals and photoresponsive molecules, respectively. The final chapter of this book introduces the integration of miniaturized photonic devices and circuits with various organic nanophotonic elements. The practical case studies demonstrate how the latest applications actually work, while tables throughout the book summarize key information and diagrams and figures help readers to grasp complex concepts and designs. The references at the end of each chapter can be used as the gateway to the relevant literature in the field. Moreover, this book helps researchers to advance their own investigations to develop the next generation of miniaturized devices for information processing, efficient energy conversion, and highly accurate sensing. Yong Sheng Zhao, PhD, is a Professor at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), China.
This detailed volume presents a number of chapters that will aid researchers in jumping the hurdle preventing the popularization of advanced intravital imaging technology usage, namely the complicated experimental protocols. Leading researchers undertaking imaging studies in the field of bone and immune systems have contributed the chapters that aim to guide readers through these complex methodologies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Intravital Imaging of Dynamic Bone and Immune Systems: Methods and Protocols will serve as an idea guide for general readers in order to establish and perform these experiments by their own.
This book covers the state of the art of laser micro- and nanotechnology. The physical fundamentals of different processes and the application are presented. The book deals with different materials like phase change and memory alloys, thin films, polymers etc. New phenomena and mechanisms of laser-matter interaction in nano-domains are explained. This book is helpful for students, postgraduates, engineers and researches working not only in the field of laser microtechnology but also in high-tech industry, like photonics, microelectronics, information technology.
Presenting a blend of applied and fundamental research in highly interdisciplinary subjects of rapidly developing areas, this book contains contributions on the frontiers and hot topics of laser physics, laser technology and laser engineering, and covers a wide range of laser topics, from all-optical signal processing and chaotic optical communication to production of superwicking surfaces, correction of extremely high-power beams, and generation of ultrabroadband spectra. It presents both review-type contributions and well researched and documented case studies, and is intended for graduate students, young scientist, and emeritus scientist working/studying in laser physics, optoelectronics, optics, photonics, and adjacent areas. The book contains both experimental and theoretical studies, as well as combinations of these two, which is known to be a most useful and interesting form of reporting scientific results, allowing students to really learn from each contribution. The book contains over 130 illustrations.
Charles Townes, a Nobel laureate, is one of the leading figures in twentieth-century physics, inventor of the maser and the laser, and one of the pioneers in the use of spectroscopic techniques to determine the atomic composition of stars. This book is the memoir of a life devoted to scientific research, and also to the application of this research in the public sphere.
This book discusses the challenges in the convergence of technologies as the Internet of Things (IoT) evolves. These include sensing, computing, information processing, networking, and controlling intelligent technologies. The contributors first provide a survey of various assessment and evaluation approaches available for successful convergence. They then go on to cover several operational ideas to apply. The contributors then discuss the challenges involved bridging gaps in computation and the communication process, hidden networks, intelligent decision making, human-to-machine perception and large-scale IoT environments. The contributors aim to provide the reader an overview of trends in IoT in terms of performability and traffic modeling and efforts that can be spent in assessing the graceful degradation in IoT paradigms. Provides a survey of IoT assessment and evaluation approaches; Covers new and innovative operational ideas that apply to the IoT industry and the industries it affects; Includes chapters from researchers and industry leaders in IoT from around the world.
This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently proposed signal processing tools and methods for addressing biological signals is included. The target audience primarily comprises researchers and expert practitioners but the book may also be beneficial for graduate students.
This book describes the state of the art in the field of bioanalytical nano- and microsystems with optical functionality. In 12 chapters distinguished scientists and leaders in their respective fields show how various optical technologies have been miniaturized and integrated over the last few decades in order to be combined with nano- and microsystems for applications in the life sciences. The main detection and characterization technologies are introduced, and examples of the superiority of these integrated approaches compared to traditional ones are provided. Examples from e.g. the fields of optical waveguides, integrated interferometers, surface plasmon resonance or Raman spectroscopy are introduced and discussed, and it is shown how these approaches have led to novel functionalities and thereby novel applications. |
You may like...
Multimodal Optical Diagnostics of Cancer
Valery V Tuchin, Jurgen Popp, …
Hardcover
R4,126
Discovery Miles 41 260
International Brigade Against Apartheid…
Ronnie Kasrils, Muff Andersson, …
Paperback
|