![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
This thesis examines the unique properties of gallium arsenide (GaAs)-based quantum-dot semiconductor optical amplifiers for optical communication networks, introducing readers to their fundamentals, basic parameters and manifold applications. The static and dynamic properties of these amplifiers are discussed extensively in comparison to conventional, non quantum-dot based amplifiers, and their unique advantages are elaborated on, such as the fast carrier dynamics and the decoupling of gain and phase dynamics. In addition to diverse amplification scenarios involving single and multiple high symbol rate amplitude and phase-coded data signals, wide-range wavelength conversion as a key functionality for optical signal processing is investigated and discussed in detail. Furthermore, two novel device concepts are developed and demonstrated that have the potential to significantly simplify network architectures, reducing the investment and maintenance costs as well as the energy consumption of future networks.
This highly practical and self-contained guidebook explains the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). A special chapter is designated to digital holographic interferometry with applications in deformation and shape measurement and refractive index determination. Applications in imaging and microscopy are also described. Spcial techniques such as digital light-in-flight holography, holographic endoscopy, information encrypting, comparative holography, and related techniques of speckle metrology are also treated
Silicon technology is evolving rapidly, particularly in
board-to-board or chip-to chip applications. Increasingly, the
electronic parts of silicon technology will carry out the data
processing, while the photonic parts take care of the data
communication. For the first time, this book describes the merging
of photonics and electronics in silicon and other group IV
elements. It presents the challenges, the limitations, and the
upcoming possibilities of these developments. The book describes
the evolution of CMOS integrated electronics, status and
development, and the fundamentals of silicon photonics, including
the reasons for its rapid expansion, its possibilities and
limitations. It discusses the applications of these technologies
for such applications as memory, digital logic operations, light
sources, including drive electronics, optical modulators,
detectors, and post detector circuitry. It will appeal to engineers
in the fields of both electronics and photonics who need to learn
more about the basics of the other field and the prospects for the
integration of the two. Describes the evolution of CMOS integrated electronics, status and development, and the fundamentals of silicon photonics
This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring physical properties in the presence of intense light waves which alter the electron energy spectra) have also been discussed in this context. The influence quantizing magnetic field, on the EP of the different HD quantized structures (quantum wells, quantum well HD superlattices and nipi structures) under different physical conditions has been investigated. This monograph contains 100 open research problems which form the integral part of the text and are useful for both Ph.D aspirants and researchers in the fields of materials science, condensed matter physics, solid-state sciences, nano-science and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures offered in different Universities and Institutes.
Optics and photonics offer new and vibrant approaches to meeting the challenges of the 21st century concerning energy conservation, education, agriculture, personal health and the environment. One of the most effective ways to address these global problems is to provide updated and reliable content on light-based technologies. Optical thin films and meta-materials, lasers, optical communications, light-emitting diodes, solar cells, liquid crystal technology, nanophotonics and biophotonics all play vital roles in enriching our lives. We hope to raise readers' awareness of how optical technologies are now promoting sustainable development and providing reliable solutions to basic human needs. Furthermore, in order to broaden new research fields, we hope to inspire them to pursue further cutting-edge breakthroughs on the basis of the accomplishments that have already been made.
A guide to the emerging technologies now being considered for use in tomorrow's fibre subscriber loop systems, this book provides a rundown on what the technologies are, describes how they work, and then shows how to apply them to increase system performance, cut design time and lower costs. "Optical Transmission for the Subscriber Loop": presents basic concepts and technologies of network topology, multiplexing methods, access methods and transfer modes; describes the most important components for optical transmission - including optical fibres, cables, splices, connectors, laser diodes, photodiodes, fibre couplers, wavelength division multiplex (WDM), and subcarrier multiplex (SCM) devices; offers comprehensive coverage of fibre connections in fibre communications engineering; covers bidirectional transmission systems and presents several approaches for economical transceivers that can be used in these systems; and explains WDM- and SCM-based multi-chanel systems.
This book offers an introduction to modern natural language processing using machine learning, focusing on how neural networks create a machine interpretable representation of the meaning of natural language. Language is crucially linked to ideas - as Webster's 1923 "English Composition and Literature" puts it: "A sentence is a group of words expressing a complete thought". Thus the representation of sentences and the words that make them up is vital in advancing artificial intelligence and other "smart" systems currently being developed. Providing an overview of the research in the area, from Bengio et al.'s seminal work on a "Neural Probabilistic Language Model" in 2003, to the latest techniques, this book enables readers to gain an understanding of how the techniques are related and what is best for their purposes. As well as a introduction to neural networks in general and recurrent neural networks in particular, this book details the methods used for representing words, senses of words, and larger structures such as sentences or documents. The book highlights practical implementations and discusses many aspects that are often overlooked or misunderstood. The book includes thorough instruction on challenging areas such as hierarchical softmax and negative sampling, to ensure the reader fully and easily understands the details of how the algorithms function. Combining practical aspects with a more traditional review of the literature, it is directly applicable to a broad readership. It is an invaluable introduction for early graduate students working in natural language processing; a trustworthy guide for industry developers wishing to make use of recent innovations; and a sturdy bridge for researchers already familiar with linguistics or machine learning wishing to understand the other.
This is a guide to the design and application of elliptical dielectric waveguides and fibers. Written by one of the pioneers of optical fiber technology, it shows the theoretical basis of the technology, demonstrates the practical uses for elliptical fibers, guides the reader through design criteria and trade-offs, and gives immediate access to collected data and references on the topic. "Elliptical Fiber Waveguides" begins with an historical overview, and then provides detailed coverage of specific waveguide and fiber modes, including all relevant specifications and data currently available. The book examines the use of elliptical fibers for a wide variety of recent applications, including sensors, rare-earth-doped fiber sources, and amplifiers. With its 278 equations, 161 figures, and nearly 200 references to the literature, "Elliptical Fiber Waveguides" brings together in one source the complete body of information currently available on this promising technology.
Based on a detailed analysis of the signal model of the moving target, this thesis focuses on the theories and applications of ground moving target indicator (GMTI) and ground moving target imaging (GMTIm) algorithms in synthetic aperture radar/ ground moving target indicator (SAR/GMTI mode), wide-area surveillance ground moving target indication (WAS-GMTI) mode and frequency modulated continuous wave synthetic aperture radar (FMCW SAR) systems. The proposed algorithms can not only indicate and image fast-moving targets, but are also effective in the context of slow-moving target processing. The system design scheme combines the mechanical scanning mode and the airborne SAR system, while the azimuth moving target indication algorithm employs the additional range walk migration induced by FMCW SAR systems. In addition, the non-ideal errors that deteriorate the performance of GMTIm algorithms in real SAR data processing are discussed, and suitable compensation methods are provided.>
This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.
"Advances in Imaging and Electron Physics" merges two
long-running serials--A"dvances in Electronics and Electron
Physics" and "Advances in Optical and Electron Microscopy." This
series features extended articles on the physics of electron
devices (especially semiconductor devices), particle optics at high
and low energies, microlithography, image science and digital image
processing, electromagnetic wave propagation, electron microscopy,
and the computing methods used in all these domains.
Computational Intelligence in Biomedical Imaging is a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients' medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians' decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational intelligence in computer-aided diagnosis, biological image analysis, and computer-aided surgery and therapy.
This book highlights technology trends and challenges that trace the evolution of antenna design, starting from 3rd generation phones and moving towards the latest release of LTE-A. The authors explore how the simple monopole and whip antenna from the GSM years have evolved towards what we have today, an antenna design that is compact, multi-band in nature and caters to multiple elements on the same patch to provide high throughput connectivity. The scope of the book targets a broad range of subjects, including the microstrip antenna, PIFA antenna, and the monopole antenna to be used for different applications over three different mobile generations. Beyond that, the authors take a step into the future and look at antenna requirements for 5G communications, which already has the 5G drive in place with prominent scenarios and use-cases emerging. They examine these, and put in place the challenges that lie ahead for antenna design, particularly in mm-Wave design. The book provides a reference for practicing engineers and under/post graduate students working in this field.
A comprehensive device model considering both spatial distributions of the terahertz field and the field-effect self-mixing factor has been constructed for the first time in the thesis. The author has found that it is the strongly localized terahertz field induced in a small fraction of the gated electron channel that plays an important role in the high responsivity. An AlGaN/GaN-based high-electron-mobility transistor with a 2-micron-sized gate and integrated dipole antennas has been developed and can offer a noise-equivalent power as low as 40 pW/Hz1/2 at 900 GHz. By further reducing the gate length down to 0.2 micron, a noise-equivalent power of 6 pW/Hz1/2 has been achieved. This thesis provides detailed experimental techniques and device simulation for revealing the self-mixing mechanism including a scanning probe technique for evaluating the effectiveness of terahertz antennas. As such, the thesis could be served as a valuable introduction towards further development of high-sensitivity field-effect terahertz detectors for practical applications.
This thesis describes novel approaches and implementation of high-resolution microscopy in the extreme ultraviolet light regime. Using coherent ultrafast laser-generated short wavelength radiation for illuminating samples allows imaging beyond the resolution of visible-light microscopes. Michael Zurch gives a comprehensive overview of the fundamentals and techniques involved, starting from the laser-based frequency conversion scheme and its technical implementation as well as general considerations of diffraction-based imaging at nanoscopic spatial resolution. Experiments on digital in-line holography and coherent diffraction imaging of artificial and biologic specimens are demonstrated and discussed in this book. In the field of biologic imaging, a novel award-winning cell classification scheme and its first experimental application for identifying breast cancer cells are introduced. Finally, this book presents a newly developed technique of generating structured illumination by means of so-called optical vortex beams in the extreme ultraviolet regime and proposes its general usability for super-resolution imaging.
This thesis focuses on the fundamental problem of characterising partially coherent beams. The book describes several non-interferometric methods based on phase-space tomography for recovering the spatial coherence information of optical beams. In the context of optical beams, partially coherent light provides numerous advantages over coherent light. From microscopy to optical communications, there are many disciplines that benefit from using partially coherent beams. However, their range of applications currently remains limited due to the complexity of extracting information. In addition to providing a feasible experimental solution for the general case, the book explores several situations in which beam symmetries are exploited to simplify the information extraction process. Each characterisation method is accompanied by a corresponding theoretical explanation and a thorough description of experimental examples.
The book aims to describe the microscopic characterization of the soft matter in the light of new advances acquired in the science of microscopy techniques like AFM; SEM; TEM etc. It does not focus on the traditional information on the microscopy methods as well as systems already present in different books, but intends to answer more fundamental questions associated with commercially important systems by using new advances in microscopy. Such questions are generally not answered by other techniques. The contents of the book also reflect this as the chapters are not based on describing only material systems, but are based on the answering the problems or questions arising in their characterization. Both qualitative as well as quantitative analysis using such microscopic techniques is discussed. Moreover, efforts have been made to provide a broader reach as discussions on both polymers as well as biological matter have been included as different sections. Such a text with comprehensive overview of the various characterization possibilities using microscopy methods can serve as a valuable reference for microscopy experts as well as non-experts alike
This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.
Lasers have a wide and growing range of applications in medicine.
Lasers for Medical Applications summarises the wealth of recent
research on the principles, technologies and application of lasers
in diagnostics, therapy and surgery.
This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: * multilayer perceptron; * the Hopfield network; * associative memory models;* clustering models and algorithms; * t he radial basis function network; * recurrent neural networks; * nonnegative matrix factorization; * independent component analysis; *probabilistic and Bayesian networks; and * fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.
This book provides a cohesive overview of the current technological advances in computational radiology, and their applications in orthopaedic interventions. Contributed by the leading researchers in the field, this volume covers not only basic computational radiology techniques such as statistical shape modeling, CT/MRI segmentation, augmented reality and micro-CT image processing, but also the applications of these techniques to various orthopaedic interventional tasks. Details about following important state-of-the-art development are featured: 3D preoperative planning and patient-specific instrumentation for surgical treatment of long-bone deformities, computer assisted diagnosis and planning of periacetabular osteotomy and femoroacetabular impingement, 2D-3D reconstruction-based planning of total hip arthroplasty, image fusion for computer-assisted bone tumor surgery, intra-operative three-dimensional imaging in fracture treatment, augmented reality based orthopaedic interventions and education, medical robotics for musculoskeletal surgery, inertial sensor-based cost-effective surgical navigation, and computer assisted hip resurfacing using patient-specific instrument guides. Edited and authored by leading researchers in the field, this work is an essential reference for biomedical engineers, computer scientists and orthopaedic surgeons to develop or use computational radiology approaches for orthopaedic surgery and interventions.
"New Approaches to Image Processing Based Failure Analysis of Nano-Scale ULSI Devices" introduces the reader to transmission and scanning microscope image processing for metal and non-metallic microstructures. Engineers and scientists face the pressing problem in ULSI development and quality assurance: microscopy methods can t keep pace with the continuous shrinking of feature size in microelectronics. Nanometer scale sizes are below the resolution of light, and imaging these features is nearly impossible even with electron microscopes, due to image noise. This book presents novel "smart" image processing methods, applications, and case studies concerning quality improvement of microscope images of microelectronic chips and process optimization. It explains an approach for high-resolution imaging of advanced metallization for micro- and nanoelectronics. This approach obviates the time-consuming preparation and selection of microscope measurement and sample conditions, enabling not only better electron-microscopic resolution, but also more efficient testing and quality control. This in turn leads to productivity gains in design and development of nano-scale ULSI chips. The authors also present several approaches for super-resolving
low-resolution images to improve failure analysis of
microelectronic chips.
Focusing on connection technologies used for both single-mode and multimode fibers, this book explains multifiber connections such as mass-fusion splice and multifiber connectors. Information on fluoride glass fibers, doped fibers (EDFA), and components is included.
This book is focused on the Internet of Things (IoT) services and smart environments that can be of assistance to the elderly and individuals living with dementia or some sensory impairment. The book outlines the requirements of the systems that aim to furnish some digital sensory or cognitive assistance to the individuals and their caregivers. Internet of Things and Smart Environments: Assistive Technologies for Disability, Dementia, and Aging covers the important evolutions of the IoT, the sensors, actuators, wireless communication and pervasive computing systems, and other enabling technologies that power up this megatrend infrastructure. The use of the IoT-based systems in improving the conventional assistive technologies and provisions of ambient assisted living are also covered. The book takes an impartial, and yet holistic, view to providing research insights and inspirations for more development works in the areas related to assistive IoT. It will show the potentials of using normally available interactive devices, like smartphones or smart TVs, which can be supplemented with low-cost gadgets or apps to provide assistive capabilities. It aims to accentuate the need for taking a comprehensive and combinatory view of the comprising topics and approaches that are based on the visions and ideas from all stakeholders. The book will examine these points and considerations to conclude with recommendations for future development works and research directions. This book can be of value to a diverse array of audience. The researchers and developers in healthcare and medicine, aged care and disability services, as well as those working in the IoT-related fields, may find many parts of this book useful and stimulating. It can be of great value to postgraduate and research students working in these areas. It can also be adapted for use in upper-level classroom courses relevant to communication and smart technologies, IoT applications, and assistive technologies. Many parts of the book can be of interest to the elderly and individuals living with a disability, as well as their families and caregivers. From an industry perspective, it can be of interest to software, hardware, and particularly app developers working on the IoT applications, smart homes and environments, and assistive technologies for the elderly and people living with disability or dementia. |
You may like...
The Asian Aspiration - Why And How…
Greg Mills, Olusegun Obasanjo, …
Paperback
Lore Of Nutrition - Challenging…
Tim Noakes, Marika Sboros
Paperback
(4)
Materials and Contact Characterisation…
S. Hernandez, J. De Hosson, …
Hardcover
R3,686
Discovery Miles 36 860
Cyanobacteria - Antibacterial Activity
Purshotam Kaushik
Hardcover
Advances in Endophytic Research
Vijay C Verma, Alan C. Gange
Hardcover
R5,249
Discovery Miles 52 490
Biofilm Infections
Thomas Bjarnsholt, Peter Ostrup Jensen, …
Hardcover
R4,048
Discovery Miles 40 480
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|