![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
Advances in High-Power Fiber and Diode Laser Engineering provides an overview of recent research trends in fiber and diode lasers and laser systems engineering. In recent years, many new fiber designs and fiber laser system strategies have emerged, targeting the mitigation of different problems which occur when standard optical fibers are used for making high-power lasers. Simultaneously, a lot of attention has been put to increasing the brightness and the output power of laser diodes. Both of these major laser development directions continue to advance at a rapid pace with the sole purpose of achieving higher power while having excellent beam quality. The book begins by introducing the principles of diode lasers and methods for improving their brightness. Later chapters cover quantum cascade lasers, diode pumped high power lasers, high average power LMA fiber amplifiers, high-power fiber lasers, beam combinable kilowatt all-fiber amplifiers, and applications of 2 m thulium fiber lasers and high-power GHz linewidth diode lasers. Written by a team of authors with experience in academia and industrial research and development, and brought together by an expert editor, this book will be of use to anyone interested in laser systems development at the laboratory or commercial scale.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
In the50years since the first volume of "Progress in Optics" was
published, optics has become one of the most dynamic fields of
science. The volumes in this series that have appeared up to now
contain more than 300 review articles by distinguished research
workers, which have become permanent records for many important
developments, helping optical scientists and optical engineers stay
abreast of their fields.
This comprehensive and state-of-the art approach to video processing gives engineers and students a comprehensive introduction and includes full coverage of key applications: wireless video, video networks, video indexing and retrieval and use of video in speech processing. Containing all the essential methods in video processing alongside the latest standards, it is a complete resource for the professional engineer, researcher and graduate student. Numerous conceptual and numerical examplesAll the latest standards are thoroughly covered: MPEG-1, MPEG-2, MPEG-4, H.264 and AVCCoverage of the latest techniques in video security ""Like its sister volume "The Essential Guide to Image
Processing," Professor Bovik s Essential Guide to Video Processing
provides a timely and comprehensive survey, with contributions from
leading researchers in the area. Highly recommended for everyone
with an interest in this fascinating and fast-moving field." Prof.
Bernd Girod, Stanford University, USA"
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Updated with contributions from leading international scholars
and industry experts
"Advances in Imaging and Electron Physics" merges two long-running serials--"Advances in Electronics and Electron Physics" and "Advances in Optical and Electron Microscopy." This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
In recent decades, cosmetic science has found new high-potency,
bioactive ingredients that produce visibly superior skin benefits
to the consumer. Light-based devices, including lasers and
intense-pulsed light systems, have been used for years in the
treatment of cutaneous vascular and pigmented lesions, yet have
only recently appeared in cosmetic applications, beauty salons and
spas. Meanwhile, ever more research and development is being
performed with the intent of bringing them to the home-use market.
"Advances in Imaging and Electron Physics" merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy." This series features
extended articles on the physics of electron devices (especially
semiconductor devices), particle optics at high and low energies,
microlithography, image science and digital image processing,
electromagnetic wave propagation, electron microscopy, and the
computing methods used in all these domains.
"Advances in Imaging and Electron Physics" merges two long-running
serials-Advances in Electronics and Electron Physics and Advances
in Optical and Electron Microscopy. This series features extended
articles on the physics of electron devices (especially
semiconductor devices), particle optics at high and low energies,
microlithography, image science and digital image processing,
electromagnetic wave propagation, electron microscopy, and the
computing methods used in all these domains.
This 6 volume set presents a groundbreaking resource in this branch of natural organic compounds and demonstrates how proton nuclear magnetic resonance (NMR) spectroscopy can be manipulated in structures of natural organic compounds. The authors provide the most comprehensive data of 17 kinds amounting to over 10,000 natural organic compounds. The 2nd volume mainly illustrates the molecular formula and structures of saponins.
The book highlights three types of technologies being developed for autonomous solution of navigation problems. These technologies are based on the polarization structure, ultra-broadband and the fluctuation characteristics (slow and fast) of the radiolocation signals. The book presents the problems of intrinsic thermal radio emission polarization and change in radio waves polarization when they are reflected from objects with non-linear properties. The purpose of this book is to develop the foundations for creating autonomous radionavigation systems to provide aviation with navigation systems that will substantially increase its capabilities, specifically acting where satellite technologies do not work. The book is intended for specialists involved in the development and operation of aviation-technical complexes, as well as for specialists of national aviation regulators and ICAO experts dealing with the problems of improving flight safety.
Optical interferometry is used in communications, medical imaging,
astonomy, and structural measurement. With the use of an
interferometer engineers and scientists are able to complete
surface inspections of micromachined surfaces and semiconductors.
Medical technicians are able to give more consise diagnoses with
the employ of interferometers in microscopy, spectroscopy, and
coherent tomography.
This third volume in the series represents the Proceedings of the
3rd International Nanophotonics Symposium, July 6-8, 2006,
Icho-Kaikan, Osaka University, Osaka, Japan. Over a two-day
symposium, distinguished scientists from around the world convened
to discuss the latest progress in this field and the conclusions
have been summarised in Nano Biophotonics: Science and Technology.
The contents of this book have been compiled by invited lecturers,
research members of the relevant projects/program, and some of
general participants. The book has 27 chapters which are classified
into 4 parts; nano bio-spectroscopy, nano bio-dynamics, nano
bio-processing, and nano bio-devices.
Sensor technologies play a large part in modern life, as they are present in things like security systems, digital cameras, smartphones, and motion sensors. While these devices are always evolving, research is being done to further develop this technology to help detect and analyze threats, perform in-depth inspections, and perform tracking services. Optoelectronics in Machine Vision-Based Theories and Applications provides innovative insights on theories and applications of optoelectronics in machine vision-based systems. It also covers topics such as applications of unmanned aerial vehicle, autonomous and mobile robots, medical scanning, industrial applications, agriculture, and structural health monitoring. This publication is a vital reference source for engineers, technology developers, academicians, researchers, and advanced-level students seeking emerging research on sensor technologies and machine vision.
Without sensors most electronic applications would not
exist-sensors perform a vital function, namely providing an
interface to the real world. Hall effect sensors, based on a
magnetic phenomena, are one of the most commonly used sensing
technologies today. In the 1970s it became possible to build Hall
effect sensors on integrated circuits with onboard signal
processing circuitry, vastly reducing the cost and enabling
widespread practical use. One of the first major applications was
in computer keyboards, replacing mechanical contacts. Hundreds of
millions of these devices are now manufactured each year for use in
a great variety of applications, including automobiles, computers,
industrial control systems, cell phones, and many others.
This book treats essentials from neurophysiology (Hodgkin-Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis). This is subsequently applied in a clinical context, focusing on EEG generation, ischaemia, epilepsy and neurostimulation. The book is based on a graduate course taught by clinicians and mathematicians at the Institute of Technical Medicine at the University of Twente. Throughout the text, the author presents examples of neurological disorders in relation to applied mathematics to assist in disclosing various fundamental properties of the clinical reality at hand. Exercises are provided at the end of each chapter; answers are included. Basic knowledge of calculus, linear algebra, differential equations and familiarity with MATLAB or Python is assumed. Also, students should have some understanding of essentials of (clinical) neurophysiology, although most concepts are summarized in the first chapters. The audience includes advanced undergraduate or graduate students in Biomedical Engineering, Technical Medicine and Biology. Applied mathematicians may find pleasure in learning about the neurophysiology and clinic essentials applications. In addition, clinicians with an interest in dynamics of neural networks may find this book useful, too.
This book is a MUST for everyone in and around the optics
community!
This textbook is designed for graduate-level courses, and for self-study, in analog and sampled-data, including switched-capacitor, circuit theory and design for ongoing, or active electrical engineers, needing to become proficient in analog circuit design on a system, rather than on a device, level. After decades of experience in industry and teaching this material in academic settings, the author has extracted many of the most important and useful features of analog circuit theory and design and presented them in a manner that is easy to digest and utilize. The methodology and analysis techniques presented can be applied to areas well beyond those specifically addressed in this book. This book is meant to enable readers to gain a 'general knowledge' of one aspect of analog engineering (e.g., that of network theory, filter design, system theory and sampled-data signal processing). The presentation is self-contained and should be accessible to anyone with a first degree in electrical engineering.
In two volumes, this book presents a detailed, systematic treatment of electromagnetics with application to the propagation of transient electromagnetic fields (including ultrawideband signals and ultrashort pulses) in dispersive attenuative media. The development in this expanded, updated, and reorganized new edition is mathematically rigorous, progressing from classical theory to the asymptotic description of pulsed wave fields in Debye and Lorentz model dielectrics, Drude model conductors, and composite model semiconductors. It will be of use to researchers as a resource on electromagnetic radiation and wave propagation theory with applications to ground and foliage penetrating radar, medical imaging, communications, and safety issues associated with ultrawideband pulsed fields. With meaningful exercises, and an authoritative selection of topics, it can also be used as a textbook to prepare graduate students for research. Volume 2 presents a detailed asymptotic description of plane wave pulse propagation in dielectric, conducting, and semiconducting materials as described by the classical Lorentz model of dielectric resonance, the Rocard-Powles-Debye model of orientational polarization, and the Drude model of metals. The rigorous description of the signal velocity of a pulse in a dispersive material is presented in connection with the question of superluminal pulse propagation. The second edition contains new material on the effects of spatial dispersion on precursor formation, and pulse transmission into a dispersive half space and into multilayered media. Volume 1 covers spectral representations in temporally dispersive media.
This textbook is based on 20 years of teaching a graduate-level course in random processes to a constituency extending beyond signal processing, communications, control, and networking, and including in particular circuits, RF and optics graduate students. In order to accommodate today's circuits students' needs to understand noise modeling, while covering classical material on Brownian motion, Poisson processes, and power spectral densities, the author has inserted discussions of thermal noise, shot noise, quantization noise and oscillator phase noise. At the same time, techniques used to analyze modulated communications and radar signals, such as the baseband representation of bandpass random signals, or the computation of power spectral densities of a wide variety of modulated signals, are presented. This book also emphasizes modeling skills, primarily through the inclusion of long problems at the end of each chapter, where starting from a description of the operation of a system, a model is constructed and then analyzed. Provides semester-length coverage of random processes, applicable to the analysis of electrical and computer engineering systems; Designed to be accessible to students with varying backgrounds in undergraduate mathematics and engineering; Includes solved examples throughout the discussion, as well as extensive problem sets at the end of every chapter; Develops and reinforces student's modeling skills, with inclusion of modeling problems in every chapter; Solutions for instructors included. |
You may like...
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
Mathematical Visualization - Algorithms…
H.C. Hege, K. Polthier
Hardcover
R2,727
Discovery Miles 27 270
Regularization of Inverse Problems
Heinz Werner Engl, Martin Hanke, …
Hardcover
R4,378
Discovery Miles 43 780
Flash Memory Integration - Performance…
Jalil Boukhobza, Pierre Olivier
Hardcover
R1,831
Discovery Miles 18 310
Web Services - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R8,957
Discovery Miles 89 570
Emerging Technologies of Augmented…
Michael Haller, Mark Billinghurst, …
Hardcover
R2,648
Discovery Miles 26 480
|