![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Continuing in the footsteps of the pioneering first edition, Signal and Image Processing for Remote Sensing, Second Edition explores the most up-to-date signal and image processing methods for dealing with remote sensing problems. Although most data from satellites are in image form, signal processing can contribute significantly in extracting information from remotely sensed waveforms or time series data. This book combines both, providing a unique balance between the role of signal processing and image processing. Featuring contributions from worldwide experts, this book continues to emphasize mathematical approaches. Not limited to satellite data, it also considers signals and images from hydroacoustic, seismic, microwave, and other sensors. Chapters cover important topics in signal and image processing and discuss techniques for dealing with remote sensing problems. Each chapter offers an introduction to the topic before delving into research results, making the book accessible to a broad audience. This second edition reflects the considerable advances that have occurred in the field, with 23 of 27 chapters being new or entirely rewritten. Coverage includes new mathematical developments such as compressive sensing, empirical mode decomposition, and sparse representation, as well as new component analysis methods such as non-negative matrix and tensor factorization. The book also presents new experimental results on SAR and hyperspectral image processing. The emphasis is on mathematical techniques that will far outlast the rapidly changing sensor, software, and hardware technologies. Written for industrial and academic researchers and graduate students alike, this book helps readers connect the "dots" in image and signal processing. New in This Edition The second edition includes four chapters from the first edition, plus 23 new or entirely rewritten chapters, and 190 new figures. New topics covered include:
The second edition is not intended to replace the first edition entirely and readers are encouraged to read both editions of the book for a more complete picture of signal and image processing in remote sensing. See Signal and Image Processing for Remote Sensing (CRC Press 2006).
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems.
This book presents recent advances, new ideas and novel techniques related to the field of nonlinear dynamics, including localized pattern formation, self-organization and chaos. Various natural systems ranging from nonlinear optics to mechanics, fluids and magnetic are considered. The aim of this book is to gather specialists from these various fields of research to promote cross-fertilization and transfer of knowledge between these active research areas. In particular, nonlinear optics and laser physics constitute an important part in this issue due to the potential applications for all-optical control of light, optical storage, and information processing. Other possible applications include the generation of ultra-short pulses using all-fiber cavities.
This book lies at the interface of machine learning - a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail - and photonics - the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs). Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.
This book presents a comprehensive, systematic approach to the development of vision system architectures that employ sensory-processing concurrency and parallel processing to meet the autonomy challenges posed by a variety of safety and surveillance applications. Coverage includes a thorough analysis of resistive diffusion networks embedded within an image sensor array. This analysis supports a systematic approach to the design of spatial image filters and their implementation as vision chips in CMOS technology. The book also addresses system-level considerations pertaining to the embedding of these vision chips into vision-enabled wireless sensor networks.Describes a system-level approach for designing of vision devices and embedding them into vision-enabled, wireless sensor networks; Surveys state-of-the-art, vision-enabled WSN nodes; Includes details of specifications and challenges of vision-enabled WSNs; Explains architectures for low-energy CMOS vision chips with embedded, programmable spatial filtering capabilities; Includes considerations pertaining to the integration of vision chips into off-the-shelf WSN platforms."
This book comprises a collection of papers by international experts, presented at the International Conference on NextGen Electronic Technologies (ICNETS2-2017). ICNETS2 encompassed six symposia covering all aspects of electronics and communications engineering domains, including relevant nano/micro materials and devices. Featuring the latest research on computational signal processing and analysis, the book is useful to researchers, professionals, and students working in the core areas of electronics and their applications, especially signal processing, embedded systems, and networking.
This book examines non-invasive, electrical-based methods for disease diagnosis and assessment of heart function. In particular, a formalized signal model is proposed since this offers several advantages over methods that rely on measured data alone. By using a formalized representation, the parameters of the signal model can be easily manipulated and/or modified, thus providing mechanisms that allow researchers to reproduce and control such signals. In addition, having such a formalized signal model makes it possible to develop computer tools that can be used for manipulating and understanding how signal changes result from various heart conditions, as well as for generating input signals for experimenting with and evaluating the performance of e.g. signal extraction methods. The work focuses on bioelectrical information, particularly electrical bio-impedance (EBI). Once the EBI has been measured, the corresponding signals have to be modelled for analysis. This requires a structured approach in order to move from real measured data to the model of the corresponding signals. This book proposes a generic framework for this procedure. It can be used as a guide for modelling impedance cardiography (ICG) and impedance respirography (IRG) signals, as well as for developing the corresponding bio-impedance signal simulator (BISS).
The book reports on the author's original work to address the use of today's state-of-the-art smartphones for human physical activity recognition. By exploiting the sensing, computing and communication capabilities currently available in these devices, the author developed a novel smartphone-based activity-recognition system, which takes into consideration all aspects of online human activity recognition, from experimental data collection, to machine learning algorithms and hardware implementation. The book also discusses and describes solutions to some of the challenges that arose during the development of this approach, such as real-time operation, high accuracy, low battery consumption and unobtrusiveness. It clearly shows that it is possible to perform real-time recognition of activities with high accuracy using current smartphone technologies. As well as a detailed description of the methods, this book also provides readers with a comprehensive review of the fundamental concepts in human activity recognition. It also gives an accurate analysis of the most influential works in the field and discusses them in detail. This thesis was supervised by both the Universitat Politecnica de Catalunya (primary institution) and University of Genoa (secondary institution) as part of the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments.
This work deals with the matrix methods of continuous signal and image processing according to which strip-transformation is used. The authors suggest ways to solve a problem of evaluating potential noise immunity and synthesis of an optimal filter for the case of pulse noises, of applying the two-dimensional strip-transformation for storage and noise immune transmission of images. The strip-transformation of images is illustrated by examples and classes of images invariant relative to symmetrical orthogonal transformations. The monograph is intended for scientists and specialists whose activities are connected with computer signals and images processing, instrumentation and metrology. It can also be used by undergraduates, as well as by post-graduates for studying computer methods of signal and image processing.
This book presents studies involving algorithms in the machine learning paradigms. It discusses a variety of learning problems with diverse applications, including prediction, concept learning, explanation-based learning, case-based (exemplar-based) learning, statistical rule-based learning, feature extraction-based learning, optimization-based learning, quantum-inspired learning, multi-criteria-based learning and hybrid intelligence-based learning.
Modeling, Simulation, Design and Engineering of WDM Systems and Networks provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building systems. The third part of the book covers networking issues related to the design of provisioning and survivability algorithms for impairment-aware and multi-domain networks. Intended for professional scientists, company engineers, and university researchers, the text demonstrates the effectiveness of computer-aided design when it comes to network engineering and prototyping.
This textbook covers the fundamental concepts of analog communications with a Q&A approach. It is a comprehensive compilation of numerical problems and solutions covering all the topics in analog communications. Richly illustrated with figures, this book covers the important topics of signals and systems, random variables and random processes, amplitude modulation, frequency modulation, pulse code modulation and noise in analog modulation. It has numerical questions and their solutions clearing the concepts of Fourier transform, Hilbert transform, modulation, synchronization, signal-to-noise ratio analysis and many more. All the solutions have step-by-step approach for easy understanding. This book will be of great interest to the students of electronics and electrical communications engineering.
This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber limited bandwidth problem can be decreased by using multilevel signaling like multilevel pulse amplitude modulation or by using an equalizer for binary data transmission.
This thesis explores a route to induce and control the structure
formation process in thin films by the use of strong electric
fields. We investigate, establish and apply the use of the
electrohydrodynamic (EHD) lithography as a versatile patterning
tool on the sub-micrometre and nanometre length scales for
functional materials. Thin films are ubiquitous, they are found in
nature and used in almost every aspect of daily life. While film
instabilities are often undesirable in nature and technology, they
can be utilized to produce structures by precisely controlling the
destabilization of the film. EHD lithography utilizes instabilities
induced by means of an electric field to fabricate periodic
structures. EHD patterning is set to become a competitive candidate
for low-cost lithographic technology for a number of applications.
Herein, the applied potential of this lithographic process is
explored by expanding its applicability to a broad range of
materials and by a simultaneous patterning of multilayer systems or
functional polymers yielding hierarchical architectures with novel
functionalities.
This book describes the development of a new low-cost medium wavelength IR (MWIR) monolithic imager technology for high-speed uncooled industrial applications. It takes the baton on the latest technological advances in the field of vapor phase deposition (VPD) PbSe-based MWIR detection accomplished by the industrial partner NIT S.L., adding fundamental knowledge on the investigation of novel VLSI analog and mixed-signal design techniques at circuit and system levels for the development of the readout integrated device attached to the detector. In order to fulfill the operational requirements of VPD PbSe, this work proposes null inter-pixel crosstalk vision sensor architectures based on a digital-only focal plane array (FPA) of configurable pixel sensors. Each digital pixel sensor (DPS) cell is equipped with fast communication modules, self-biasing, offset cancellation, analog-to-digital converter (ADC) and fixed pattern noise (FPN) correction. In-pixel power consumption is minimized by the use of comprehensive MOSFET subthreshold operation.
Here's the only book to comprehensively address integrated optics from both the theory and practical modeling standpoints -- it reveals crucial design methods that decrease your overall device modeling effort.
This book presents the main research advances in the field of photofunctional rare earth hybrid materials. The first chapter discusses the fundamental principles, ranging from rare earth, rare earth luminescence, luminescent rare earth compounds and photofunctional rare earth hybrid materials. The main body of the book consists of six chapters exploring different kinds of photofunctional hybrid materials, such as hybrids based on organically modified silica; organically modified mesoporous silica; functionalized microporous zeolite and metal-organic frameworks; polymer or polymer/silica composite; and multi-component assembly of hybrids. It also includes a chapter introducing the photofunctional application of these hybrid materials. It is a valuable resource for a wide readership in various fields of rare earth chemistry, chemical science and materials science.
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
Session 2 includes 110 papers selected from 2011 3rd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2011), held on December 24-25, 2011, Shenzhen, China. As we all know, the ever growing technology in robotics and automation will help build a better human society. This session will provide a unique opportunity for the academic and industrial communities to address new challenges, share solutions, and discuss research directions for the future. Robotics research emphasizes intelligence and adaptability to cope with unstructured environments. Automation research emphasizes efficiency, productivity, quality, and reliability, focusing on systems that operate autonomously. The main focus of this session is on the autonomous acquisition of semantic information in intelligent robots and systems, as well as the use of semantic knowledge to guide further acquisition of information.
Hardware Based Packet Classification for High Speed Internet Routers presents the most recent developments in hardware based packet classification algorithms and architectures. This book describes five methods which reduce the space that classifiers occupy within TCAMs; TCAM Razor, All-Match Redundancy Removal, Bit Weaving, Sequential Decomposition, and Topological Transformations. These methods demonstrate that in most cases a substantial reduction of space is achieved. Case studies and examples are provided throughout this book. About this book: * Presents the only book in the market that exclusively covers hardware based packet classification algorithms and architectures. * Describes five methods which reduce the space that classifiers occupy within TCAMs: TCAM Razor, All-Match Redundancy Removal, Bit Weaving, Sequential Decomposition, and Topological Transformations. * Provides case studies and examples throughout. Hardware Based Packet Classification for High Speed Internet Routers is designed for professionals and researchers who work within the related field of router design. Advanced-level students concentrating on computer science and electrical engineering will also find this book valuable as a text or reference book.
This book provides an overview of the design, synthesis, and characterization of different photoactive hybrid organic-inorganic materials, based on the combination of mainly organic molecules and inorganic nanostructures, tackling their uses in different scientific fields from photonics to biomedicine. There are many examples extensively describing how the confinement of organic compounds (i.e. chromophores, photochromic molecules or photoreactants), or other photoactive compounds (i.e.metal clusters) into several microporous systems can modulate the photophysical properties and photochemical reactions leading to interesting applications. Among (ordered)-hosts, different systems of diverse nature are widely used, such as the, the 1D- or 3D- channels of zeolitic frameworks, interlayer space of 2D-clays, the organic nanospace of curcubituril and cyclodextrins or the organo-inorganic porous crystalline MOFs systems. This volume highlights the advances of these photoactive materials and aims to be an inspiration for researchers working in materials science and photochemistry, including chemists, material engineers, physicists, biologists, and medical researchers.
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a "greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.
Digital holography is an emerging field of new paradigm in general imaging applications. The book presents an introduction to the theoretical and numerical principles and reviews the research and development activities in digital holography, with emphasis on the microscopy techniques and applications. Topics covered include the general theory of diffraction and holography formations, and practical instrumentation and experimentation of digital holography. Various numerical techniques are described that give rise to the unique and versatile capabilities of digital holography. Representative special techniques and applications of digital holography are discussed. The book is intended for researchers interested in developing new techniques and exploring new applications of digital holography.
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy." |
![]() ![]() You may like...
|