![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
This book focuses on partitional clustering algorithms, which are commonly used in engineering and computer scientific applications. The goal of this volume is to summarize the state-of-the-art in partitional clustering. The book includes such topics as center-based clustering, competitive learning clustering and density-based clustering. Each chapter is contributed by a leading expert in the field.
This book presents a study of the use of optimization algorithms in complex image processing problems. The problems selected explore areas ranging from the theory of image segmentation to the detection of complex objects in medical images. Furthermore, the concepts of machine learning and optimization are analyzed to provide an overview of the application of these tools in image processing. The material has been compiled from a teaching perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics, and can be used for courses on Artificial Intelligence, Advanced Image Processing, Computational Intelligence, etc. Likewise, the material can be useful for research from the evolutionary computation, artificial intelligence and image processing communities.
This book is focused on the study of physical mechanisms and device design for achieving high-performance infrared photodetection based on low-dimensional materials. Through theory analysis, material characterization and photo-electric measurements, it provides solutions to the trade-off problems which are commonly encountered in traditional infrared photodetectors and presents novel methods to improve the responsivity, detectivity and response speed. Researchers and scientists in the field of opto-electronic device can benefit from the book.
Human information and communication technology (ICT) implants have developed for many years in a medical context. Such applications have become increasingly advanced, in some cases modifying fundamental brain function. Today, comparatively low-tech implants are being increasingly employed in non-therapeutic contexts, with applications ranging from the use of ICT implants for VIP entry into nightclubs, automated payments for goods, access to secure facilities and for those with a high risk of being kidnapped. Commercialisation and growing potential of human ICT implants have generated debate over the ethical, legal and social aspects of the technology, its products and application. Despite stakeholders calling for greater policy and legal certainty within this area, gaps have already begun to emerge between the commercial reality of human ICT implants and the current legal frameworks designed to regulate these products. This book focuses on the latest technological developments and on the legal, social and ethical implications of the use and further application of these technologies.
Since 1995, when Costas Fotakis first brought together restorers and scientists to discuss the potential of lasers in art conservation, the field has grown enormously in importance, and today restorers and laser scientists work together to develop new applications. This book presents the more than six dozen research papers prepared for LACONA V (Lasers in Art Conservation), held in Osnabrueck/Germany in September 2003. The fifth congress once again gathered restorers, art historians, museum staff, laser scientists and laser manufacturers. The topics include, among others: laser cleaning of artworks (case studies and side effects), removal of former conservation layers, fundamentals of laser-artwork interaction, online monitoring and process control, laser diagnostics, spectroscopy for monitoring and identification, networks and cooperation projects.
This book presents novel and advanced technologies for medical sciences in order to solidify knowledge in the related fields and define their key stakeholders. The fifteen papers included in this book were written by invited experts of international stature and address important technologies for medical sciences, including: computational modeling and simulation, image processing and analysis, medical imaging, human motion and posture, tissue engineering, design and development medical devices, and mechanic biology. Different applications are treated in such diverse fields as biomechanical studies, prosthesis and orthosis, medical diagnosis, sport, and virtual reality. This book is of interest to researchers, students and manufacturers from a wide range of disciplines related to bioengineering, biomechanics, computational mechanics, computational vision, human motion, mathematics, medical devices, medical image, medicine and physics.
This book covers key topics in the field of intelligent ambient adaptive systems. It focuses on the results worked out within the framework of the ATRACO (Adaptive and TRusted Ambient eCOlogies) project. The theoretical background, the developed prototypes, and the evaluated results form a fertile ground useful for the broad intelligent environments scientific community as well as for industrial interest groups. The new edition provides: Chapter authors comment on their work on ATRACO with final remarks as viewed in retrospective Each chapter has been updated with follow-up work emerging from ATRACO An extensive introduction to state-of-the-art statistical dialog management for intelligent environments Approaches are introduced on how Trust is reflected during the dialog with the system
This book explores the life and scientific legacy of Manfred Schroeder through personal reflections, scientific essays and Schroeder s own memoirs. Reflecting the wide range of Schroeder s activities, the first part of the book contains thirteen articles written by his colleagues and former students. Topics discussed include his early, pioneering contributions to the understanding of statistical room acoustics and to the measurement of reverberation time; his introduction of digital signal processing methods into acoustics; his use of ray tracing methods to study sound decay in rooms and his achievements in echo and feedback suppression and in noise reduction. Other chapters cover his seminal research in speech processing including the use of predictive coding to reduce audio bandwidth which led to various code-excited linear prediction schemes, today used extensively for speech coding. Several chapters discuss Schroeder s work in low-peak factor signals, number theory, and maximum-length sequences with key applications in hearing research, diffraction gratings, artificial reverberators and de-correlation techniques for enhancing subjective envelopment in surround sound. In style, the articles range from truly scientific to conversationally personal. In all contributions, the relationship between the current research presented and Manfred Schroeder s own fields of interest is, in general, evident. The second part of the book consists of Schroeder s own memoirs, written over the final decade of his life. These recollections shed light on many aspects not only of Schroeder s life but also on that of many of his colleagues, friends and contemporaries. They portray political, social and scientific events over a period that extends from pre-war to the present. These memoirs, written in an inimitable and witty style, are full of information, entertaining and fun to read, providing key insight into the life and work of one of the greatest acousticians of the 20th century."
This book provides an introduction to software-defined radio and cognitive radio, along with methodologies for applying knowledge representation, semantic web, logic reasoning and artificial intelligence to cognitive radio, enabling autonomous adaptation and flexible signaling. Readers from the wireless communications and software-defined radio communities will use this book as a reference to extend software-defined radio to cognitive radio, using the semantic technology described.
This book describes a range of new biometric technologies, such as high-resolution fingerprint, finger-knuckle-print, multi-spectral backhand, 3D fingerprint, tongueprint, 3D ear, and multi-spectral iris technologies. Further, it introduces readers to efficient feature extraction, matching and fusion algorithms, in addition to developing potential systems of its own. These advanced biometric technologies and methods are divided as follows: 1. High-Resolution Fingerprint Recognition; 2. Finger-Knuckle-Print Verification; 3. Other Hand-Based Biometrics; and 4. New Head-Based Biometrics. Traditional biometric technologies, such as fingerprint, face, iris, and palmprint, have been extensively studied and addressed in many research books. However, all of these technologies have their own advantages and disadvantages, and there is no single type of biometric technology that can be used for all applications. Many new biometric technologies have been developed in recent years, especia lly in response to new applications. The contributions gathered here focus on how to develop a new biometric technology based on the requirements of essential applications, and how to design efficient algorithms that yield better performance.
This book collects the proceedings of the 2012 Abel Symposium, held at the Norwegian Academy of Science and Letters, Oslo. The Symposium, and this book, are focused on two important fields of modern mathematical analysis: operator-related function theory and time-frequency analysis; and the profound interplay between them. Among the original contributions and overview lectures gathered here are a paper presenting multifractal analysis as a bridge between geometric measure theory and signal processing; local and global geometry of Prony systems and Fourier reconstruction of piecewise-smooth functions; Bernstein's problem on weighted polynomial approximation; singular distributions and symmetry of the spectrum; and many others. Offering a selection of the latest and most exciting results obtained by world-leading researchers, the book will benefit scientists working in Harmonic and Complex Analysis, Mathematical Physics and Signal Processing.
Wireless Vehicular Networks for Car Collision Avoidance focuses on the development of the ITS (Intelligent Transportation Systems) in order to minimize vehicular accidents. The book presents and analyses a range of concrete accident scenarios while examining the causes of vehicular collision and proposing countermeasures based on wireless vehicular networks.The book also describes the vehicular network standards and quality of service mechanisms focusing on improving critical dissemination of safety information. With recommendations on techniques and protocols to consider when improving road safety policies in order to minimize crashes and collision risks.
The current progression of 3-D imaging is part of a photonics revolution that continues to discover new human needs and ever-greater potential. Updating the content as further technologies and commercial applications appear becomes essential in the field of 3-D imaging. Techniques and Principles in Three-Dimensional Imaging: An Introductory Approach provides the reader with a concrete understanding of basic principles and pitfalls for 3-D capturing. Highlighting stereoscopic imaging systems including holography; this book is an essential tool for scholars concerned with the interdisciplinary field of 3-D science and next generation imaging, as well as readers interested in the field of three-dimensional and its wider application.
This book is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. This implementation is demonstrated by the presentation of several circuits where the MOS parametric amplifier cell is used: small gain amplifier, comparator with embedded pre-amplification, discrete-time mixer/IIR-Filter, and analog-to-digital converter (ADC). Experimental results are shown to validate the overall design technique.
This book provides insight into the challenges in providing data authentication over wireless communication channels. The authors posit that established standard authentication mechanisms - for wired devices - are not sufficient to authenticate data, such as voice, images, and video over wireless channels. The authors propose new mechanisms based on the so-called soft authentication algorithms, which tolerate some legitimate modifications in the data that they protect. The authors explain that the goal of these algorithms is that they are tolerant to changes in the content but are still able to identify the forgeries. The authors go on to describe how an additional advantage of the soft authentication algorithms is the ability to identify the locations of the modifications and correct them if possible. The authors show how to achieve this by protecting the data features with the help of error correcting codes. The correction methods are typically based on watermarking, as the authors discuss in the book. Provides a discussion of data (particularly image) authentication methods in the presence of noise experienced in wireless communication; Presents a new class of soft authentication methods, instead of the standard hard authentication methods, used to tolerate minor changes in image data; Features authentication methods based on the usage of authentication tags as well as digital watermarks.
Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contribute to biomedical industry. This is a truly interdisciplinary field and convergence technology where the communication between different disciplines is the most challenging issue for the success of the great works. One of the first steps to promote the communications in this convergence technology would be teaching the basics of these different fields to the researchers in a plain language with the help of "Convergence of Terahertz Science in Biomedical Systems" which is considered to be 3-4th year college students or beginning level of graduate students. Therefore, this type of book can be used by many people who want to enter or understand this field. Even more it can be used for teaching in universities or research institutions.
Complex Orthogonal Space-Time Processing in Wireless Communications incorporates orthogonal space-time processing using STBCs in MIMO wireless communication systems. Complex Orthogonal STBCs (CO STBCs) are given emphasis because they can be used for PSK/QAM modulation schemes and are more practical than real STBCs. The overall coverage provides general knowledge about space-time processing and its applications for broad audiences. It also includes the most up-to-date review of the literature on space-time processing in general, and space-time block processing in particular. The authors also examine open issues and problems for future research in this area.
This second volume in the Handai Nanophotonics book series covers
the area of Nanoplasmonics, a recent hot topic in the field of
nanophotonics, impacting a diverse range of research disciplines
from information technology and nanotechnology to the bio- and
medical sciences. The interaction between photons and metal
nanostructures leads to interesting and extraordinary scientific
phenomena and produces new functions for nano materials and
devices. Newly discovered physical phenomena include local mode of
surface plasmon polariton excited in nanoparticles, hot spots on
nano-rods and nano-cones, long range mode of surface plasmons
excited on thin metal films, and dispersion relationship bandgaps
of surface plasmons in periodic metal structures. These have been
applied to, for example, single molecule detection and
nano-imaging/spectroscopy, photon accumulation for lasing
applications, optical nano-waveguides and nano-circuits.
This book provides readers with a selection of high-quality chapters that cover both theoretical concepts and practical applications of image feature detectors and descriptors. It serves as reference for researchers and practitioners by featuring survey chapters and research contributions on image feature detectors and descriptors. Additionally, it emphasizes several keywords in both theoretical and practical aspects of image feature extraction. The keywords include acceleration of feature detection and extraction, hardware implantations, image segmentation, evolutionary algorithm, ordinal measures, as well as visual speech recognition.
Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26 - 28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland , March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations condition. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers are divided into five sections, namely: Condition monitoring of machines in non-stationary operationsModeling of dynamics and fault in systems Signal processing and Pattern recognition Monitoring and diagnostic systems Noise and vibration of machinesThe presented book gives the back ground to the main objective of the CMMNO 2012 conference that is to bring together scientific community to discuss the major advances in the field of machinery condition monitoring in non-stationary conditions.
Autonomous sensors transmit data and power their electronics without using cables. They can be found in e.g. wireless sensor networks (WSNs) or remote acquisition systems. Although primary batteries provide a simple design for powering autonomous sensors, they present several limitations such as limited capacity and power density, and difficulty in predicting their condition and state of charge. An alternative is to extract energy from the ambient (energy harvesting). However, the reduced dimensions of most autonomous sensors lead to a low level of available power from the energy transducer. Thus, efficient methods and circuits to manage and gather the energy are a must. An integral approach for powering autonomous sensors by considering both primary batteries and energy harvesters is presented.Two rather different forms of energy harvesting are also dealt with: optical (or solar) and radiofrequency (RF). Optical energy provides high energy density, especially outdoors, whereas RF remote powering is possibly the most feasible option for autonomous sensors embedded into the soil or within structures. Throughout different chapters, devices such as primary and secondary batteries, supercapacitors, and energy transducers are extensively reviewed. Then, circuits and methods found in the literature used to efficiently extract and gather the energy are presented. Finally, new proposals based on the authors own research are analyzed and tested. Every chapter is written to be rather independent, with each incorporating the relevant literature references. "Powering Autonomous Sensors" is intended for a wide audience working on or interested in the powering of autonomous sensors. Researchers and engineers can find a broad introduction to basic topics in this interesting and emerging area as well as further insights on the topics of solar and RF harvesting and of circuits and methods to maximize the power extracted from energy transducers.
Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics. The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are analyzed. Innovative materials such as nanocomposites are characterized, designed, and applied in order to provide new ideas about detection principles. As with many electric circuitries, light applications and architectures suffer from noising due to physical and transmission connections. The book illustrates some examples for practical issues. The theory and the nanotechnology facilities provide important tools for researchers working with sensing applications.
The second edition of Electronic Imaging in Astronomy: Detectors and Instrumentation describes the remarkable developments that have taken place in astronomical detectors and instrumentation in recent years -- from the invention of the charge-coupled device (CCD) in 1970 to the current era of very large telescopes, such as the Keck 10-meter telescopes in Hawaii with their laser guide-star adaptive optics which rival the image quality of the Hubble Space Telescope. Authored by one of the world s foremost experts on the design and development of electronic imaging systems for astronomy, this book has been written on several levels to appeal to a broad readership. Mathematical expositions are controlled to encourage a wider audience, especially among the growing community of amateur astronomers who own small telescopes with CCD cameras. The book can be used at the college level for a one semester introductory course on modern astronomical detectors and instruments, and as a supplement for a practical or laboratory class. But it also provides the core of a one semester course on astronomical instrumentation for new graduate (PhD) students who may very soon be faced with using, or even building, electronic imaging systems. The book contains worked examples, problems & solutions, end-of-chapter references and a glossary."
This book is the first graduate-level textbook presenting a comprehensive treatment of Data Converters. It provides comprehensive definition of the parameters used to specify data converters, and covers all the architectures used in Nyquist-rate data converters. The book uses Simulink and Matlab extensively in examples and problem sets. This is a textbook that is also essential for engineering professionals as it was written in response to a shortage of organically organized material on the topic. The book assumes a solid background in analog and digital circuits as well as a working knowledge of simulation tools for circuit and behavioral analysis.
This book shows how the various paradigms of computational intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. The text is self-contained, addressing concepts, methodology, algorithms, and case studies and applications, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data acquisition, morphology and use in diagnosis; Part II deals with techniques and models of computational intelligence that are suitable for signal processing; and, Part III details ECG system-diagnostic interpretation and knowledge acquisition architectures. Illustrative material includes: brief numerical experiments; and, detailed schemes, exercises and more advanced problems. |
You may like...
Wanted Dead & Alive - The Case For South…
Gregory Mthembu-Salter
Paperback
Practical Authority - Agency and…
Rebecca Neaera Abers, Margaret E. Keck
Hardcover
R3,843
Discovery Miles 38 430
Kodaly in the First Grade Classroom…
Micheal Houlahan, Philip Tacka
Hardcover
R3,590
Discovery Miles 35 900
|