![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
This book examines the architectures, technologies, and design methods that make it possible to achieve a survivable fiber network, both practically and economically. Combining theory and actual results, it explores alternative methods and presents analytical and computational optimization approaches.
Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differential equations such as Time-Dependent Schroedinger Equations (TDSE) andTime-Dependent Dirac equations (TDDEs for relativistic phenomena). These equations are also coupled to the photons in Maxwell's equations for collective propagation effects. Inversion of the experimental imaging data of quantum dynamics presents new mathematical challenges in the imaging of quantum wave coherences on subatomic (subnanometer) spatial dimensions and multiple timescales from atto to femto and even nanoseconds.In "Quantum Dynamic Imaging: Theoretical and Numerical Methods," leading researchers discuss these exciting state-of-the-art developments and theirimplications for R&D in view of the promise of quantum dynamic imagingscience as the essential tool for controlling matter at the molecular level."
This book features papers presented at IIH-MSP 2018, the 14th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. The scope of IIH-MSP included information hiding and security, multimedia signal processing and networking, and bio-inspired multimedia technologies and systems. The book discusses subjects related to massive image/video compression and transmission for emerging networks, advances in speech and language processing, recent advances in information hiding and signal processing for audio and speech signals, intelligent distribution systems and applications, recent advances in security and privacy for multimodal network environments, multimedia signal processing, and machine learning. Presenting the latest research outcomes and findings, it is suitable for researchers and students who are interested in the corresponding fields. IIH-MSP 2018 was held in Sendai, Japan on 26-28 November 2018. It was hosted by Tohoku University and was co-sponsored by the Fujian University of Technology in China, the Taiwan Association for Web Intelligence Consortium in Taiwan, and the Swinburne University of Technology in Australia, as well as the Fujian Provincial Key Laboratory of Big Data Mining and Applications (Fujian University of Technology) and the Harbin Institute of Technology Shenzhen Graduate School in China.
The main objective of this book is to provide a multidisciplinary overview of methodological approaches, architectures, platforms, and algorithms for the realization of an Internet of Things (IoT)-based Smart Urban Ecosystem (SUE). Moreover, the book details a set of real-world applications and case studies related to specific smart infrastructures and smart cities, including structural health monitoring, smart urban drainage networks, smart grids, power efficiency, healthcare, city security, and emergency management. A Smart Urban Ecosystem (SUE) is a people-centric system of systems that involves smart city environments, applications, and infrastructures. SUEs require the close integration of cyber and physical components for monitoring, understanding and controlling the urban environment. In this context, the Internet of Things (IoT) offers a valuable enabling technology, as it bridges the gap between physical things and software components, and empowers cooperation between distributed, pervasive, and heterogeneous entities.
This book discusses the design of multi-camera systems and their application to fields such as the virtual reality, gaming, film industry, medicine, automotive industry, drones, etc. The authors cover the basics of image formation, algorithms for stitching a panoramic image from multiple cameras, and multiple real-time hardware system architectures, in order to have panoramic videos. Several specific applications of multi-camera systems are presented, such as depth estimation, high dynamic range imaging, and medical imaging.
Recent studies have shown that novel processing and modeling techniques may be used to create patient-specific prostheses, artificial tissues, and other implants using data obtained from magnetic resonance imaging, computed tomography, or other imaging techniques. For example, customized prostheses may be fabricated that possess suitable features, including geometry, size, and weight, for a given medical condition. Many advances have been made in the development of patient-specific implants in the past decade, yet this information is not readily available to scientists and students. Printed Biomaterials: Novel Processing and Modeling Techniques for Medicine and Surgery provides the biomaterials scientist and engineer, as well as advanced undergraduate or graduate students, with a comprehensive discussion of contemporary medical implant research and development. The development of printed biomaterials is multidisciplinary, and includes concepts traditionally associated with engineering, materials science, medicine, and surgery. This text highlights important topics in these core fields in order to provide the fundamentals necessary to comprehend current processing and modeling technologies and to develop new ones.
The book written by Dr. Radu B. Rusu presents a detailed description of 3D Semantic Mapping in the context of mobile robot manipulation. As autonomous robotic platforms get more sophisticated manipulation capabilities, they also need more expressive and comprehensive environment models that include the objects present in the world, together with their position, form, and other semantic aspects, as well as interpretations of these objects with respect to the robot tasks. The book proposes novel 3D feature representations called Point Feature Histograms (PFH), as well as a frameworks for the acquisition and processing of Semantic 3D Object Maps with contributions to robust registration, fast segmentation into regions, and reliable object detection, categorization, and reconstruction. These contributions have been fully implemented and empirically evaluated on different robotic systems, and have been the original kernel to the widely successful open-source project the Point Cloud Library (PCL) -- see http: //pointclouds.org.
The common belief is that light is completely reflected by metals. In reality they also exhibit an amazing property that is not so widely known: under some conditions light flows along a metallic surface as if it were glued to it. Physical phenomena related to these light waves, which are called Surface Plasmon Polaritons (SPP), have given rise to the research field of plasmonics. This thesis explores four interesting topics within plasmonics: extraordinary optical transmission, negative refractive index metamaterials, plasmonic devices for controlling SPPs, and field enhancement phenomena near metal nanoparticles.
This book deals with timing attacks on cryptographic ciphers. It describes and analyzes various unintended covert timing channels that are formed when ciphers are executed in microprocessors. The book considers modern superscalar microprocessors which are enabled with features such as multi-threaded, pipelined, parallel, speculative, and out-of order execution. Various timing attack algorithms are described and analyzed for both block ciphers as well as public-key ciphers. The interplay between the cipher implementation, the system architecture, and the attack's success is analyzed. Further hardware and software countermeasures are discussed with the aim of illustrating methods to build systems that can protect against these attacks.
This dissertation provides the first systematic analysis of the dynamic energy efficiency of vertical-cavity surface-emitting lasers (VCSELs) for optical interconnects, a key technology to address the pressing ecological and economic issues of the exponentially growing energy consumption in data centers. Energy-efficient data communication is one of the most important fields in "Green Photonics" enabling higher bit rates at significantly reduced energy consumption per bit. In this thesis the static and dynamic properties of GaAs-based oxide-confined VCSELs emitting at 850 nm and 980 nm are analyzed and general rules for achieving energy-efficient data transmission using VCSELs at any wavelength are derived. These rules are verified in data transmission experiments leading to record energy-efficient data transmission across a wide range of multimode optical fiber distances and at high temperatures up to 85 DegreesC. Important trade-offs between energy efficiency, temperature stability, modulation bandwidth, low current-density operation and other VCSEL properties are revealed and discussed.
This book describes the use of low-power low-cost and extremely small radios to provide essential time reference for wireless sensor networks. The authors explain how to integrate such radios in a standard CMOS process to reduce both cost and size, while focusing on the challenge of designing a fully integrated time reference for such radios. To enable the integration of the time reference, system techniques are proposed and analyzed, several kinds of integrated time references are reviewed, and mobility-based references are identified as viable candidates to provide the required accuracy at low-power consumption. Practical implementations of a mobility-based oscillator and a temperature sensor are also presented, which demonstrate the required accuracy over a wide temperature range, while drawing 51-uW from a 1.2-V supply in a 65-nm CMOS process."
Accessing remote instrumentation worldwide is one of the goals of e-Science. The task of enabling the execution of complex experiments that involve the use of distributed scientific instruments must be supported by a number of different architectural domains, which inter-work in a coordinated fashion to provide the necessary functionality. These domains embrace the physical instruments, the communication network interconnecting the distributed systems, the service oriented abstractions and their middleware. The Grid paradigm (or, more generally, the Service Oriented Architecture -- SOA), viewed as a tool for the integration of distributed resources, plays a significant role, not only to manage computational aspects, but increasingly as an aggregator of measurement instrumentation and pervasive large-scale data acquisition platforms. In this context, the functionality of a SOA allows managing, maintaining and exploiting heterogeneous instrumentation and acquisition devices in a unified way, by providing standardized interfaces and common working environments to their users, but the peculiar aspects of dealing with real instruments of widely different categories may add new functional requirements to this scenario. On the other hand, the growing transport capacity of core and access networks allows data transfer at unprecedented speed, but new challenges arise from wireless access, wireless sensor networks, and the traversal of heterogeneous network domains. The book focuses on all aspects related to the effective exploitation of remote instrumentation and to the building complex virtual laboratories on top of real devices and infrastructures. These include SOA and related middleware, high-speed networking in support of Grid applications, wireless Grids for acquisition devices and sensor networks, Quality of Service (QoS) provisioning for real-time control, measurement instrumentation and methodology, as well as metrology issues in distributed systems.
This thesis presents optical methods to split the energy levels of electronic valleys in transition-metal dichalcogenides (TMDs) by means of coherent light-matter interactions. The electronic valleys found in monolayer TMDs such as MoS2, WS2, and WSe2 are among the many novel properties exhibited by semiconductors when thinned down to a few atomic layers, and have have been proposed as a new way to carry information in next generation devices (so-called valleytronics). These valleys are, however, normally locked in the same energy level, which limits their potential use for applications. The author describes experiments performed with a pump-probe technique using transient absorption spectroscopy on MoS2 and WS2. It is demonstrated that hybridizing the electronic valleys with light allows one to optically tune their energy levels in a controllable valley-selective manner. In particular, by using off-resonance circularly polarized light at small detuning, one can tune the energy level of one valley through the optical Stark effect. Also presented within are observations, at larger detuning, of a separate contribution from the so-called Bloch--Siegert effect, a delicate phenomenon that has eluded direct observation in solids. The two effects obey opposite selection rules, enabling one to separate the two effects at two different valleys.
The present volume is a compilation of research work in computation, communication, vision sciences, device design, fabrication, upcoming materials and related process design, etc. It is derived out of selected manuscripts submitted to the 2014 National Workshop on Advances in Communication and Computing (WACC 2014), Assam Engineering College, Guwahati, Assam, India which is emerging out to be a premier platform for discussion and dissemination of knowhow in this part of the world. The papers included in the volume are indicative of the recent thrust in computation, communications and emerging technologies. Certain recent advances in ZnO nanostructures for alternate energy generation provide emerging insights into an area that has promises for the energy sector including conservation and green technology. Similarly, scholarly contributions have focused on malware detection and related issues. Several contributions have focused on biomedical aspects including contributions related to cancer detection using active learning, application of clinical information in MECG using sample and channel convolution matrices for better diagnostic decision, etc. Some other works have focused on the DCT-domain linear regression of ECG signals, SVD Analysis on reduced 3-lead ECG data, the quantification of diagnostic information on ECG signal, a compressed sensing approach with application in MRI, learning aided image de-noising for medical applications, etc. Some works have dealt with application of audio fingerprinting for multi-lingual Indian song retrieval, semi-automatic approach to segmentation and the marking of pitch contours for prosodic analysis, semiautomatic syllable labeling for Assamese language, stressed speech recognition, handwriting recognition in Assamese script, speaker verification considering the effect of session variability and the block matching for motion estimation, etc. The primary objective of the present volume is to prepare a document for dissemination of and discussion on emerging areas of research in computation and communication as aimed by WACC 2014. We hope that the volume will serve as a reference book for researchers in these areas.
Artificial Intelligence (AI) is penetrating in all sciences as a multidisciplinary approach. However, adopting the theory of AI including computer vision and computer audition to urban intellectual space, is always difficult for architecture and urban planners. This book overcomes this challenge through a conceptual framework by merging computer vision and audition to urban studies based on a series of workshops called Remorph, conducted by Tehran Urban Innovation Center (TUIC).
Semiconductor heterostructures represent the backbone for an increasing variety of electronic and photonic devices, for applications including information storage, communication and material treatment, to name but a few. Novel structural and material concepts are needed in order to further push the performance limits of present devices and to open up new application areas. This thesis demonstrates how key performance characteristics of three completely different types of semiconductor lasers can be tailored using clever nanostructure design and epitaxial growth techniques. All aspects of laser fabrication are discussed, from design and growth of nanostructures using metal-organic vapor-phase epitaxy, to fabrication and characterization of complete devices.
This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.
The basic principle of protective relaying of power systems has not changed for more than half a century. Almost all power system protective relaying algorithms are dominated by integral transforms such as the Fourier transform and the wavelet transform. The integral transform can only provide an average attribute of the s- nals or their components. The accuracy of the attribute extraction is signi?cantly sacri?ced by the assumption of periodicity of the signals if the integral transform is appliedto transientsignals. Itis also wellknownthatthe signalsare liable to bec- taminatedbynoiseintheformofexponentiallydecayingDCoffsets,highfrequency transients, harmonic distortion, errors caused by non-linearityin the response of the sensors, and unwanted behaviour of power systems. This contamination is often provoked by fault conditions, just at the time when the protection relay is required to respond and trip the circuit breaker to limit damage caused by the fault. On the other hand, as we know, in most protection relays, complex computation has to be undertakenwithin a sampling interval, no matter how small the interval, to calculate the coef?cients relevantto the attributes of the signals byusing the integral transform based on a window of samples, and to calculate the relaying algorithms, which are derivedto representthe relationship betweenthese coef? cientsandpower system faults. If fast transients and high-order harmonics are to be addressed, - tra computing power and facilities are required. Therefore, it can be seen that the current power system relaying algorithms suffer from many problems including - curacy, fast responses, noise, disturbance rejections and reliability.
The Proceedings of First International Conference on Opto-Electronics and Applied Optics 2014, IEM OPTRONIX 2014 presents the research contributions presented in the conference by researchers from both India and abroad. Contributions from established scientists as well as students are included. The book is organized to enable easy access to various topics of interest. The first part includes the Keynote addresses by Phillip Russell, Max Planck Institute of the Light Sciences, Erlangen, Germany and Lorenzo Pavesi, University of Trento, Italy. The second part focuses on the Plenary Talks given by eminent scientists, namely, Azizur Rahman, City University London, London; Bishnu Pal, President, The Optical Society of India; Kamakhya Ghatak, National Institute of Technology, Agartala; Kehar Singh, Former Professor, India Institute of Technology Delhi; Mourad Zghal, SUPCOM, University of Carthage, Tunisia; Partha Roy Chaudhuri, IIT Kharagpur; S K. Bhadra, CSIR-Central Glass and Ceramic Research Institute, Kolkata; Sanjib Chatterjee, Raja Ramanna Centre for Advanced Technology, Indore; Takeo Sasaki, Tokyo University, Japan; Lakshminarayan Hazra, Emeritus Professor, University of Calcutta, Kolkata; Shyam Akashe, ITM University, Gwalior and Vasudevan Lakshminarayanan, University of Waterloo, Canada. The subsequent parts focus on topic-wise contributory papers in Application of Solar Energy; Diffraction Tomography; E.M. Radiation Theory and Antenna; Fibre Optics and Devices; Photonics for Space Applications; Micro-Electronics and VLSI; Nano-Photonics, Bio-Photonics and Bio-Medical Optics; Non-linear Phenomena and Chaos; Optical and Digital Data and Image Processing; Optical Communications and Networks; Optical Design; Opto-Electronic Devices; Opto-Electronic Materials and Quantum Optics and Information Processing.
This book is aimed at those readers who already have some knowledge of mathematical methods and have also been introduced to the basic ideas of quantum optics. It should be attractive to students who have already explored one of the more introductory texts such as Loudon's The quantum theory of light (2/e, 1983, OUP) and are seeking to acquire the mathematical skills used in real problems. This book is not primarily about the physics of quantum optics but rather presents the mathematical methods widely used by workers in this field. There is no comparable book which covers either the range or the depth of mathematical techniques.
"Satellite Data Compression" covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. "Satellite Data Compression," contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-based, lookup-table-based, transform-based, clustering-based, and projection-based approaches. This book provides valuable information on state-of-the-art satellite data compression technologies for professionals and students who are interested in this topic. "Satellite Data Compression" is designed for a professional audience comprised of computer scientists working in satellite communications, sensor system design, remote sensing, data receiving, airborne imaging and geographical information systems (GIS). Advanced-level students and academic researchers will also benefit from this book.
This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.
This book presents cutting-edge research on a wide range of nanotechnology techniques and applications. It features contributions from scientists who participated in the International Summer School "Nanotechnology: From Fundamental Research to Innovations" in Bukovel, Ukraine on August 26 - September 2, 2012 funded by the European Commission FP7 project Nanotwinning implemented by the Institute of Physics of National Academy of Sciences of Ukraine and partner institutions: University of Tartu (Estonia), European Profiles A.E. (Greece), University of Turin (Italy) and Universite Pierre et Marie Curie (France). Worldwide experts present the latest results on such key topics as microscopy of nanostructures; nanocomposites; nanostructured interfaces and surfaces; nanooptics; nanoplasmonics; and enhanced vibrational spectroscopy. Imaging technique coverage ranges from atomic force microscopy and spectroscopy, multiphoton imagery, and laser diagnostics of nanomaterials and nanostructures, to resonance Raman and SERS for surface characterization, and scanning tunneling microscopy of organic molecules. The breadth of topics highlights the exciting variety of research currently being undertaken in this field and suggests new opportunities for interdisciplinary collaboration and future research. |
You may like...
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Fundamentals of Femtosecond Optics
S. A. Kozlov, V.V. Samartsev
Hardcover
R3,072
Discovery Miles 30 720
Infrared Thermography in the Evaluation…
Carosena Meola, Simone Boccardi, …
Hardcover
R3,497
Discovery Miles 34 970
Semiconductor Lasers - Fundamentals and…
Alexei Baranov, Eric Tournie
Hardcover
R5,574
Discovery Miles 55 740
Luminescent Metal Nanoclusters…
Sabu Thomas, Joseph Kuruvilla, …
Paperback
R6,671
Discovery Miles 66 710
|