![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Interference coatings are an essential part of modern optics. This book is designed to give a concise but complete overview of the field, with contributions written by leading experts in the various areas. Topics include design, materials, film growth, deposition including large area, characterization and monitoring, and mechanical stress. The authors also describe applications in astronomy, microcomponents, DUV/VUV, EUV/X, ultrafast optics, displays, and ultrasensitive fluorescence. Furthermore, laser-resistant coatings and coatings for free-electron lasers and plastic optics are covered. The book concludes with chapters on photonic structures as interference devices and on the brilliant world of natural coatings.
In recent years there has been an increasing interest in Second Generation Image and Video Coding Techniques. These techniques introduce new concepts from image analysis that greatly improve the performance of the coding schemes for very high compression. This interest has been further emphasized by the future MPEG 4 standard. Second generation image and video coding techniques are the ensemble of approaches proposing new and more efficient image representations than the conventional canonical form. As a consequence, the human visual system becomes a fundamental part of the encoding/decoding chain. More insight to distinguish between first and second generation can be gained if it is noticed that image and video coding is basically carried out in two steps. First, image data are converted into a sequence of messages and, second, code words are assigned to the messages. Methods of the first generation put the emphasis on the second step, whereas methods of the second generation put it on the first step and use available results for the second step. As a result of including the human visual system, second generation can be also seen as an approach of seeing the image composed by different entities called objects. This implies that the image or sequence of images have first to be analyzed and/or segmented in order to find the entities. It is in this context that we have selected in this book three main approaches as second generation video coding techniques: Segmentation-based schemes Model Based Schemes Fractal Based Schemes GBP/LISTGBP Video Coding: The Second Generation Approach is an important introduction to the new coding techniques for video. As such, all researchers, students and practitioners working in image processing will find this book of interest.
The major thrust of this book is the realisation of an all optical computer. To that end it discusses optoelectronic devices and applications, transmission systems, integrated optoelectronic systems and, of course, all optical computers. The chapters on heterostructure light emitting devices' quantum well carrier transport optoelectronic devices' present the most recent advances in device physics, together with modern devices and their applications. The chapter on microcavity lasers' is essential to the discussion of present and future developments in solid-state laser physics and technology and puts into perspective the present state of research into and the technology of optoelectronic devices, within the context of their use in advanced systems. A significant part of the book deals with problems of propagation in quantum structures. soliton-based switching, gating and transmission systems' presents the basics of controlling the propagation of photons in solids and the use of this control in devices. The chapters on optoelectronic processing using smart pixels' and all optical computers' are preceded by introductory material in fundamentals of quantum structures for optoelectronic devices and systems' and linear and nonlinear absorption and reflection in quantum well structures'. It is clear that new architectures will be necessary if we are to fully utilise the potentiality of electrooptic devices in computing, but even current architectures and structures demonstrate the feasibility of the all optical computer: one that is possible today.
This book is an edited version of lectures given by the authors at the 1985 Jilin University Summer School on Laser Physics. The School was held at Jilin University in Changchun, Peoples' Republic of China.
Logic design of digital devices is a very important part of the Computer Science. It deals with design and testing of logic circuits for both data-path and control unit of a digital system. Design methods depend strongly on logic elements using for implementation of logic circuits. Different programmable logic devices are wide used for implementation of logic circuits. Nowadays, we witness the rapid growth of new and new chips, but there is a strong lack of new design methods. This book includes a variety of design and test methods targeted on different digital devices. It covers methods of digital system design, the development of theoretical base for construction and designing of the PLD-based devices, application of UML for digital design. A considerable part of the book is devoted to design methods oriented on implementing control units using FPGA and CPLD chips. Such important issues as design of reliable FSMs, automatic design of concurrent logic controllers, the models and methods for creating infrastructure IP services for the SoCs are also presented. The editors of the book hope that it will be interesting and useful for experts in Computer Science and Electronics, as well as for students, who are viewed as designers of future digital devices and systems.
The goal of this book is to disseminate information on the worldwide status and trends in biosensing R and D to government decisionmakers and the research community. The contributors critically analyze and compare biosensing research in the United States with that being pursued in Japan, Europe and other major industrialized countries. Biosensing includes systems that incorporate a variety of means, including electrical, electronic, and photonic devices; biological materials (e.g., tissue, enzymes, nucleic acids, etc.); and chemical analysis to produce detectable signals for the monitoring or identification of biological phenomena. In a broader sense, the study of biosensing includes any approach to detection of biological elements and the associated software or computer identification technologies (e.g., imaging) that identify biological characteristics. Biosensing is finding a growing number of applications in a wide variety of areas, including biomedicine, food production and processing, and detection of bacteria, viruses, and biological toxins for biowarfare defense. Subtopics likely to be covered in this study include the following: Nucleic acid sensors and DNA chips and arrays, organism- and cell-based biosensors, bioelectronics and biometrics, biointerfaces and biomaterials; biocompatibility and biofouling, integrated, multi-modality sensors and sensor networks, system issues, including signal transduction, data interpretation, and validation, novel sensing algorithms, e.g., non-enzyme-based sensors for glucose, mechanical sensors for prosthetics, related issues in bio-MEMS and NEMS (microelectromechanical and nanoelectromechanical systems), possibly including actuators, applications in biomedicine, the environment, food industry, security and defense. Particular emphasis will be on technologies that may lead to portable or fieldable devices/instruments. Important consideration will be given to an integrated approach to detection, storage, analysis, validation, interpretation and presentation of results from the biosensing system. Focus will be on research from the following disciplines: BioMems and nano, optical spectroscopy, mass spectroscopy, chemometrics, pattern recognition, telemetry, signal processing, and toxicology. Finally, beyond the above technical issues, the study will also address the following non-technical issues: Mechanisms for enhancing international and interdisciplinary cooperation in the field, opportunities for shortening the lead time for deployment of new biosensing technologies emerging from the laboratory, long range research, educational, and infrastructure issues that need addressed to promote better progress in the field, current government R and D funding levels overseas compared to the United States, to the extent data are available.
This book of proceedings includes papers presenting the state of art in electrical engineering and control theory as well as their applications. The topics focus on classical as well as modern methods for modeling, control, identification and simulation of complex systems with applications in science and engineering. The papers were selected from the hottest topic areas, such as control and systems engineering, renewable energy, faults diagnosis-faults tolerant control, large-scale systems, fractional order systems, unconventional algorithms in control engineering, signals and communications. The control and design of complex systems dynamics, analysis and modeling of its behavior and structure is vitally important in engineering, economics and in science generally science today. Examples of such systems can be seen in the world around us and are a part of our everyday life. Application of modern methods for control, electronics, signal processing and more can be found in our mobile phones, car engines, home devices like washing machines is as well as in such advanced devices as space probes and systems for communicating with them. All these technologies are part of technological backbone of our civilization, making further research and hi-tech applications essential. The rich variety of contributions appeals to a wide audience, including researchers, students and academics.
Optoelectronic devices transform electrical signals into optical signals (and vice versa) by utilizing the interaction of electrons and light. Advanced software tools for the design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help the reader to better understand internal device physics. Real-world devices such as edge-emitting or surface-emitting laser diodes, light-emitting diodes, solar cells, photodetectors, and integrated optoelectronic circuits are investigated. The software packages described in the book are available to the public, on a commercial or noncommercial basis, so that the interested reader is quickly able to perform similar simulations.
This book provides an introduction to Swarm Robotics, which is the application of methods from swarm intelligence to robotics. It goes on to present methods that allow readers to understand how to design large-scale robot systems by going through many example scenarios on topics such as aggregation, coordinated motion (flocking), task allocation, self-assembly, collective construction, and environmental monitoring. The author explains the methodology behind building multiple, simple robots and how the complexity emerges from the multiple interactions between these robots such that they are able to solve difficult tasks. The book can be used as a short textbook for specialized courses or as an introduction to Swarm Robotics for graduate students, researchers, and professionals who want a concise introduction to the field.
The idea of writing a book on CMOS imaging has been brewing for several years. It was placed on a fast track after we agreed to organize a tutorial on CMOS sensors for the 2004 IEEE International Symposium on Circuits and Systems (ISCAS 2004). This tutorial defined the structure of the book, but as first time authors/editors, we had a lot to learn about the logistics of putting together information from multiple sources. Needless to say, it was a long road between the tutorial and the book, and it took more than a few months to complete. We hope that you will find our journey worthwhile and the collated information useful. The laboratories of the authors are located at many universities distributed around the world. Their unifying theme, however, is the advancement of knowledge for the development of systems for CMOS imaging and image processing. We hope that this book will highlight the ideas that have been pioneered by the authors, while providing a roadmap for new practitioners in this field to exploit exciting opportunities to integrate imaging and "smartness" on a single VLSI chip. The potential of these smart imaging systems is still unfulfilled. Hence, there is still plenty of research and development to be done.
This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and Emotional-State Recognition proposes a novel probabilistic approach based on the point-process theory in order to model and characterize the instantaneous ANS nonlinear dynamics providing a foundation from which machine "understanding" of emotional response can be enhanced. Using mathematics and signal processing, this work also contributes to pragmatic issues such as emotional and mood-state modeling, elicitation, and non-invasive ANS monitoring. Throughout the text a critical review on the current state-of-the-art is reported, leading to the description of dedicated experimental protocols, novel and reliable mood models, and novel wearable systems able to perform ANS monitoring in a naturalistic environment. Biomedical engineers will find this book of interest, especially those concerned with nonlinear analysis, as will researchers and industrial technicians developing wearable systems and sensors for ANS monitoring.
The development of linear-scaling density functional theory (LS-DFT) has made ab initio calculations on systems containing thousands of atoms possible. These systems range from nanostructures to biomolecules. These methods rely on the use of localized basis sets, which are optimised for the representation of occupied Kohn-Sham states but do not guarantee an accurate representation of the unoccupied states. This is problematic if one wishes to combine the power of LS-DFT with that of theoretical spectroscopy, which provides a direct link between simulation and experiment. In this work a new method is presented for optimizing localized functions to accurately represent the unoccupied states, thus allowing theoretical spectroscopy of large systems. Results are presented for optical absorption spectra calculated using the ONETEP code, but the method is equally applicable to other spectroscopies and LS formulations. Other topics covered include a study of some simple one dimensional basis sets and the presentation of two methods for band structure calculation using localized basis sets, both of which have important implications for the use of localized basis sets within LS-DFT.
This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.
This book demonstrates how to model the entire target acquisition process using either visible or infrared imaging systems. Beginning with an overview on electro-optical system design, the text introduces the complexity of various design considerations. A discussion of the differing types of visible and infrared sensors outlines basic wavelength issues and provides definitions of baseline hardware solutions.
While books on the medical applications of x-ray imaging exist, there is not one currently available that focuses on industrial applications. Full of color images that show clear spectrometry and rich with applications, X-Ray Imaging fills the need for a comprehensive work on modern industrial x-ray imaging. It reviews the fundamental science of x-ray imaging and addresses equipment and system configuration. Useful to a broad range of radiation imaging practitioners, the book looks at the rapid development and deployment of digital x-ray imaging system.
It gives me immense pleasure to introduce this timely handbook to the research/- velopment communities in the ?eld of signal processing systems (SPS). This is the ?rst of its kind and represents state-of-the-arts coverage of research in this ?eld. The driving force behind information technologies (IT) hinges critically upon the major advances in both component integration and system integration. The major breakthrough for the former is undoubtedly the invention of IC in the 50's by Jack S. Kilby, the Nobel Prize Laureate in Physics 2000. In an integrated circuit, all components were made of the same semiconductor material. Beginning with the pocket calculator in 1964, there have been many increasingly complex applications followed. In fact, processing gates and memory storage on a chip have since then grown at an exponential rate, following Moore's Law. (Moore himself admitted that Moore's Law had turned out to be more accurate, longer lasting and deeper in impact than he ever imagined. ) With greater device integration, various signal processing systems have been realized for many killer IT applications. Further breakthroughs in computer sciences and Internet technologies have also catalyzed large-scale system integration. All these have led to today's IT revolution which has profound impacts on our lifestyle and overall prospect of humanity. (It is hard to imagine life today without mobiles or Internets ) The success of SPS requires a well-concerted integrated approach from mul- ple disciplines, such as device, design, and application.
This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.
This is a comprehensive tutorial on the emerging technology of free-space laser communications (FSLe. The book offers an all-inclusive source of information on the basics of FSLC, and a review of state-of-the-art technologies. Coverage includes atmospheric effects for laser propagation and FSLC systems performance and design. Free-Space Laser Communications is a valuable resource for engineers, scientists and students interested in laser communication systems designed for the atmospheric optical channel.
This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.
This book presents the main concepts in handling digital images of mixed content, traditionally referenced as mixed raster content (MRC), in two main parts. The first includes introductory chapters covering the scientific and technical background aspects, whereas the second presents a set of research and development approaches to tackle key issues in MRC segmentation, compression and transmission. The book starts with a review of color theory and the mechanism of color vision in humans. In turn, the second chapter reviews data coding and compression methods so as to set the background and demonstrate the complexity involved in dealing with MRC. Chapter three addresses the segmentation of images through an extensive literature review, which highlights the various approaches used to tackle MRC segmentation. The second part of the book focuses on the segmentation of color images for optimized compression, including multi-layered decomposition and representation of MRC and the processes that can be employed to optimize the coding rates of those different layers. Rounding out the coverage, the final chapter examines the segmentation of color images for optimized transmission.
This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields.
Image Technology Design: A Perceptual Approach is an essential
reference for both academic and professional researchers in the
fields of image technology, image processing and coding, image
display, and image quality. It bridges the gap between academic
research on visual perception and image quality and applications of
such research in the design of imaging systems.
Mathematical summary for Digital Signal Processing Applications with Matlab consists of Mathematics which is not usually dealt in the DSP core subject, but used in DSP applications. Matlab programs with illustrations are given for the selective topics such as generation of Multivariate Gaussian distributed sample outcomes, Bacterial foraging algorithm, Newton's iteration, Steepest descent algorithm, etc. are given exclusively in the separate chapter. Also Mathematical summary for Digital Signal Processing Applications with Matlab is written in such a way that it is suitable for Non-Mathematical readers and is very much suitable for the beginners who are doing research in Digital Signal Processing.
This book focuses on selected topics which are new and of fundamental importance in the application of active glasses in photonic devices. Most of the chapters deal with glasses under the action of higher electromagnetic fields, such as those produced by femtosecond lasers. They cover the creation and analysis of induced structures in glasses and some functional devices using active glasses. This book is designed for both graduate students and researchers in the field. |
You may like...
Fiber-Optic Measurement Techniques
Rongqing Hui, Maurice O'Sullivan
Hardcover
R2,980
Discovery Miles 29 800
Fundamentals of Femtosecond Optics
S. A. Kozlov, V.V. Samartsev
Hardcover
R3,072
Discovery Miles 30 720
Infrared Thermography in the Evaluation…
Carosena Meola, Simone Boccardi, …
Hardcover
R3,497
Discovery Miles 34 970
Phenomena of Optical Metamaterials
Ortwin Hess, Tatjana Gric
Paperback
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
|