![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Digital Functions and Data Reconstruction: Digital-Discrete Methods provides a solid foundation to the theory of digital functions and its applications to image data analysis, digital object deformation, and data reconstruction. This new method has a unique feature in that it is mainly built on discrete mathematics with connections to classical methods in mathematics and computer sciences. Digitally continuous functions and gradually varied functions were developed in the late 1980s. A. Rosenfeld (1986) proposed digitally continuous functions for digital image analysis, especially to describe the "continuous" component in a digital image, which usually indicates an object. L. Chen (1989) invented gradually varied functions to interpolate a digital surface when the boundary appears to be continuous. In theory, digitally continuous functions are very similar to gradually varied functions. Gradually varied functions are more general in terms of being functions of real numbers; digitally continuous functions are easily extended to the mapping from one digital space to another. This will be the first book about digital functions, which is an important modern research area for digital images and digitalized data processing, and provides an introduction and comprehensive coverage of digital function methods. Digital Functions and Data Reconstruction: Digital-Discrete Methods offers scientists and engineers who deal with digital data a highly accessible, practical, and mathematically sound introduction to the powerful theories of digital topology and functional analysis, while avoiding the more abstruse aspects of these topics.
This book presents a new diagnostic information methodology to assess the quality of conversational telephone speech. For this, a conversation is separated into three individual conversational phases (listening, speaking, and interaction), and for each phase corresponding perceptual dimensions are identified. A new analytic test method allows gathering dimension ratings from non-expert test subjects in a direct way. The identification of the perceptual dimensions and the new test method are validated in two sophisticated conversational experiments. The dimension scores gathered with the new test method are used to determine the quality of each conversational phase, and the qualities of the three phases, in turn, are combined for overall conversational quality modeling. The conducted fundamental research forms the basis for the development of a preliminary new instrumental diagnostic conversational quality model. This multidimensional analysis of conversational telephone speech is a major landmark towards deeply analyzing conversational speech quality for diagnosis and optimization of telecommunication systems.
Dialect Accent Features for Establishing Speaker Identity: A Case Study discusses the subject of forensic voice identification and speaker profiling. Specifically focusing on speaker profiling and using dialects of the Hindi language, widely used in India, the authors have contributed to the body of research on speaker identification by using accent feature as the discriminating factor. This case study contributes to the understanding of the speaker identification process in a situation where unknown speech samples are in different language/dialect than the recording of a suspect. The authors' data establishes that vowel quality, quantity, intonation and tone of a speaker as compared to Khariboli (standard Hindi) could be the potential features for identification of dialect accent.
This book is dedicated to the analysis and design of analog CMOS nonlinear function synthesizer structures, based on original superior-order approximation functions. A variety of analog function synthesizer structures are discussed, based on accurate approximation functions. Readers will be enabled to implement numerous circuit functions with applications in analog signal processing, including exponential, Gaussian or hyperbolic functions. Generalizing the methods for obtaining these particular functions, the author analyzes superior-order approximation functions, which represent the core for developing CMOS analog nonlinear function synthesizers.
Silicon sensors integrated with readout circuits on one chip are now being considered for a wide and growing range of applications. Technological compatibility constraints and the need for economic large-scale production are now the major concerns if these devices are to become widely used in industry and medicine. This is the first book to attempt to evaluate the real prospects and limitations of integrated silicon smart sensors. It provides a thorough introduction to and review of, the field, covering both technical and economic issues critical to the future success of this technology.
This book is designed as an introductory course for undergraduate students, in Electrical and Electronic, Mechanical, Mechatronics, Chemical and Petroleum engineering, who need fundamental knowledge of electrical circuits. Worked out examples have been presented after discussing each theory. Practice problems have also been included to enrich the learning experience of the students and professionals. PSpice and Multisim software packages have been included for simulation of different electrical circuit parameters. A number of exercise problems have been included in the book to aid faculty members.
This book is aimed at researchers, industry professionals and students interested in the broad ranges of disciplines related to condition monitoring of machinery working in non-stationary conditions. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO'2018, held on June 20 - 22, 2018, in Santander, Spain. The book describes both theoretical developments and a number of industrial case studies, which cover different topics, such as: noise and vibrations in machinery, conditioning monitoring in non-stationary operations, vibro-acoustic diagnosis of machinery, signal processing, application of pattern recognition and data mining, monitoring and diagnostic systems, faults detection, dynamics of structures and machinery, and mechatronic machinery diagnostics.
The book focuses on the different aspects of sensing technology, i.e. high reliability, adaptability, recalibration, information processing, data fusion, validation and integration of novel and high performance sensors specifically aims to monitor agricultural and environmental parameters. This book is dedicated to Sensing systems for Agricultural and Environmental Monitoring offers to variety of users, namely, Master and PhD degree students, researchers, practitioners, especially Agriculture and Environmental engineers. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.
Global Navigation Satellite Systems (GNSS), such as GPS, have become an efficient, reliable and standard tool for a wide range of applications. However, when processing GNSS data, the stochastic model characterising the precision of observations and the correlations between them is usually simplified and incomplete, leading to overly optimistic accuracy estimates. This work extends the stochastic model using signal-to-noise ratio (SNR) measurements and time series analysis of observation residuals. The proposed SNR-based observation weighting model significantly improves the results of GPS data analysis, while the temporal correlation of GPS observation noise can be efficiently described by means of autoregressive moving average (ARMA) processes. Furthermore, this work includes an up-to-date overview of the GNSS error effects and a comprehensive description of various mathematical methods.
This book reports on the latest advances in the analysis of non-stationary signals, with special emphasis on cyclostationary systems. It includes cutting-edge contributions presented at the 7th Workshop on "Cyclostationary Systems and Their Applications," which was held in Grodek nad Dunajcem, Poland, in February 2014. The book covers both the theoretical properties of cyclostationary models and processes, including estimation problems for systems exhibiting cyclostationary properties, and several applications of cyclostationary systems, including case studies on gears and bearings, and methods for implementing cyclostationary processes for damage assessment in condition-based maintenance operations. It addresses the needs of students, researchers and professionals in the broad fields of engineering, mathematics and physics, with a special focus on those studying or working with nonstationary and/or cyclostationary processes.
Mathematical morphology is a powerful methodology for the processing and analysis of geometric structure in signals and images. This book contains the proceedings of the fifth International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing, held June 26-28, 2000, at Xerox PARC, Palo Alto, California. It provides a broad sampling of the most recent theoretical and practical developments of mathematical morphology and its applications to image and signal processing. Areas covered include: decomposition of structuring functions and morphological operators, morphological discretization, filtering, connectivity and connected operators, morphological shape analysis and interpolation, texture analysis, morphological segmentation, morphological multiresolution techniques and scale-spaces, and morphological algorithms and applications. Audience: The subject matter of this volume will be of interest to electrical engineers, computer scientists, and mathematicians whose research work is focused on the theoretical and practical aspects of nonlinear signal and image processing. It will also be of interest to those working in computer vision, applied mathematics, and computer graphics.
The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. The book will highlight several exciting new discoveries, while providing a clear discussion of the underlying physics, the nanofabrication issues, and the materials considerations involved in designing plasmonic devices with new functionality. It is written at the level of a first year graduate student with some background in electromagnetic theory and working knowledge of Maxwell's equations.
Perspectives in Spread Spectrum brings together studies and recent work on six exciting topics from the spread spectrum arts. The book gives a wide, collective view of trends, ideas, and techniques in the spread spectrum discipline, due to the authors' extensive work on spread spectrum techniques and applications from different vantage points. The inexorable march of electronics towards ever faster, ever smaller, and ever more powerful electronic and optical circuitry has wrought, and will continue to enable, profound changes in the spread spectrum arts, by allowing increasingly complex signalling waveforms and statistical tests to be implemented as the theory beyond spread spectrum continues to evolve. Perspectives in Spread Spectrum is divided into six chapters. The first chapter deals with sequence spreading design. There is not a single metric for design of spreading sequences; rather, the design is ideally tailored to the specific scenario of usage. This chapter delves into recent and very promising synthesis work. The second chapter deals with OFDM techniques. As channels become wider and trans-channel fading (or jamming) becomes frequency selective across the band, OFDM techniques may provide a powerful alternative design perspective. The third chapter is a generalization of the venerable Walsh functions. A new modulation scheme, Geometric Harmonic Modulation, GHM for short, is reviewed and characterized as a form of OFDM. From GHM, a further generalization of the Walsh functions is derived for non-binary signalling. The fourth chapter is concerned with some new and exciting results regarding the follower jammer paradigm. A counter-countermeasure technique is reviewed, notable for its counterintuitive characteristic which can be understood from a simple yet elegant game framework. The fifth chapter recounts some results pertaining to random coding for an optical spread spectrum link. The technique is based on laser speckle statistics and uses a coherent array of spatial light modulators at the transmitter but allows the receiver to be realized as a spatially distributed radiometric and therefore incoherent structure. The sixth and final chapter looks at an important and interesting application of spread spectrum to accurately locate a wideband, 'bent pipe', satellite transponder. It is, in a strong sense, an inverted GPS technique. Perspectives in Spread Spectrum serves as an excellent reference and source of ideas for further research, and may be used as a text for advanced courses on the topic.
For more than a century, microscopy has been a centerpiece of extraordinary discoveries in biology. Along the way, remarkable imaging tools have been developed allowing scientists to dissect the complexity of cellular processes at the nano length molecular scales. Nanoimaging: Methods and Protocols presents a diverse collection of microscopy techniques and methodologies that provides guidance to successfully image cellular molecular complexes at nanometer spatial resolution. The book's four parts cover: (1) light microscopy techniques with a special emphasis on methods that go beyond the classic diffraction-limited imaging; (2) electron microscopy techniques for high-resolution imaging of molecules, cells and tissues, in both two and three dimensions; (3) scanning probe microscopy techniques for imaging and probing macromolecular complexes and membrane surface topography; and (4) complementary techniques on correlative microscopy, soft x-ray tomography and secondary ion mass spectrometry imaging. Written in the successful format of the Methods in Molecular Biology (TM) series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Nanoimaging: Methods and Protocols highlights many of the most exciting possibilities in microscopy for the investigation of biological structures at the nano length molecular scales.
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, the theory of polariton solitons in semiconductor microcavities, and Terahertz waves.
This book describes the algorithms and computer architectures used to create and analyze photographs in modern digital cameras. It also puts the capabilities of digital cameras into context for applications in art, entertainment, and video analysis. The author discusses the entire range of topics relevant to digital camera design, including image processing, computer vision, image sensors, system-on-chip, and optics, while clearly describing the interactions between design decisions at these different levels of abstraction. Readers will benefit from this comprehensive view of digital camera design, describing the range of algorithms used to compose, enhance, and analyze images, as well as the characteristics of optics, image sensors, and computing platforms that determine the physical limits of image capture and computing. The content is designed to be used by algorithm designers and does not require an extensive background in optics or electronics.
Ultrafast diode lasers offer a variety of applications including high-bit-rate optical fiber communication lines, ultrafast optical data processing, optical computing radar systems, optoelectronic measurement applications and instrumentation. This work introduces this developing field, from basic physical principles to applications. It is intended for scientists working in the fields of optical communications and data processing, ultrafast electronics and laser physics.
The emergence of highly efficient short-wavelength laser diodes based on the III-V compound semiconductor GaN has not only enabled high-density optical data storage, but is also expected to revolutionize display applications. Moreover, a variety of scientific applications in biophotonics, materials research and quantum optics can benefit from these versatile and cost-efficient laser light sources in the near-UV to green spectral range. This thesis describes the device physics of GaN-based laser diodes, together with recent efforts to achieve longer emission wavelengths and short-pulse emission. Experimental and theoretical approaches are employed to address the individual device properties and optimize the laser diodes toward the requirements of specific applications.
Optical microscopy and associated technologies advanced quickly after the introduction of the laser. The techniques have stimulated further development of optical imaging theory, including 3-dimensional microscopy imaging theory in spatial and frequency domains, the theory of imaging with ultrashort-pulse beams and aberration theory for high-numerical-aperture objectives. This book introduces these new theories in terms of modern optical microscopy. It consists of seven chapters including an introduction. The chapters are organized to minimize cross-referencing. Comparisons with classical imaging theory are made when the new imaging theory is introduced. The book is intended for senior undergraduate students in courses on optoelectronics, optical engineering, photonics, biophotonics and applied physics, after they have completed modern optics or a similar subject. It is also a reference for other scientists interested in the field.
This book is intended for students and professionals who are interested in the field of digital signal processing of delta-sigma modulated sequences. The overall focus is on the development of algorithms and circuits for linear, non-linear, and mixed mode processing of delta-sigma modulated pulse streams. The material presented here is directly relevant to applications in digital communication, DSP, instrumentation, and control.
The book is designed to provide graduate students and research novices with an introductory review of recent developments in the field of magneto-optics. The field encompasses many of the most important subjects in solid state physics, chemical physics and electronic engineering. The book deals with (1) optical spectroscopy of paramagnetic, antiferromagnetic, and ferromagnetic materials, (2) studies of photo-induced magnetism, and (3) their applications to opto-electronics. Many of these studies originate from those of ligand-field spectra of solids, which are considered to have contributed to advances in materials research for solid-state lasers.
This book guides readers through the design of hardware architectures using VHDL for digital communication and image processing applications that require performance computing. Further it includes the description of all the VHDL-related notions, such as language, levels of abstraction, combinational vs. sequential logic, structural and behavioral description, digital circuit design, and finite state machines. It also includes numerous examples to make the concepts presented in text more easily understandable.
Optical Solitons represent one of the most exciting and fascinating concepts in modern communications, arousing special interest due to their potential applications in optical fibre communication. This volume focuses on the explicit integration of analytical and experimental methods in nonlinear fibre optics and integrated optics. It covers all important recent technical issues in optical-soliton communication. For example, individual chapters are devoted to topics such as dispersion management and fibre Bragg grating. All authors are leading authorities in their fields.
This book describes important recent developments in fiber optic sensor technology and examines established and emerging applications in a broad range of fields and markets, including power engineering, chemical engineering, bioengineering, biomedical engineering, and environmental monitoring. Particular attention is devoted to niche applications where fiber optic sensors are or soon will be able to compete with conventional approaches. Beyond novel methods for the sensing of traditional parameters such as strain, temperature, and pressure, a variety of new ideas and concepts are proposed and explored. The significance of the advent of extended infrared sensors is discussed, and individual chapters focus on sensing at THz frequencies and optical sensing based on photonic crystal structures. Another important topic is the resonances generated when using thin films in conjunction with optical fibers, and the enormous potential of sensors based on lossy mode resonances, surface plasmon resonances, and long-range surface exciton polaritons. Detailed attention is also paid to fiber Bragg grating sensors and multimode interference sensors. Each chapter is written by an acknowledged expert in the subject under discussion.
The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range - is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine and in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches and technologies. In this book we introduce and discuss one such novel approach -the radiation formed in a Crystalline Undulator -whereby electromagnetic radiation is generated by a bunch of ultra-relativistic particles channeling through a periodically bent crystalline structure. Under certain conditions, such a device can emit intensive spontaneous monochromatic radiation and even reach the coherence of laser light sources. Readers will be presented with the underlying fundamental physics and be familiarized with the theoretical, experimental and technological advances made during the last one and a half decades in exploring the various features of investigations into crystalline undulators. This research draws upon knowledge from many research fields - such as materials science, beam physics, the physics of radiation, solid state physics and acoustics, to name but a few. Accordingly, much care has been taken by the authors to make the book as self-contained as possible in this respect, so as to also provide a usefulintroduction to this emerging field to a broad readership of researchers and scientist with various backgrounds. This new edition has been revised and extended to take recent developments in the field into account." |
You may like...
Choose Possibility - How to Master Risk…
Sukhinder Singh Cassidy
Paperback
R394
Discovery Miles 3 940
Talking To Strangers - What We Should…
Malcolm Gladwell
Paperback
(2)
|