![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
This edited monograph is written by leading experts in this area and is the first book entirely devoted to Raman amplification. Three sections include extensive background on Raman physics, descriptions of sub-systems and modules utilizing Raman technology, and a review of current state-of-the-art systems.
The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. The book will highlight several exciting new discoveries, while providing a clear discussion of the underlying physics, the nanofabrication issues, and the materials considerations involved in designing plasmonic devices with new functionality. It is written at the level of a first year graduate student with some background in electromagnetic theory and working knowledge of Maxwell's equations.
Dialect Accent Features for Establishing Speaker Identity: A Case Study discusses the subject of forensic voice identification and speaker profiling. Specifically focusing on speaker profiling and using dialects of the Hindi language, widely used in India, the authors have contributed to the body of research on speaker identification by using accent feature as the discriminating factor. This case study contributes to the understanding of the speaker identification process in a situation where unknown speech samples are in different language/dialect than the recording of a suspect. The authors' data establishes that vowel quality, quantity, intonation and tone of a speaker as compared to Khariboli (standard Hindi) could be the potential features for identification of dialect accent.
Mathematical morphology is a powerful methodology for the processing and analysis of geometric structure in signals and images. This book contains the proceedings of the fifth International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing, held June 26-28, 2000, at Xerox PARC, Palo Alto, California. It provides a broad sampling of the most recent theoretical and practical developments of mathematical morphology and its applications to image and signal processing. Areas covered include: decomposition of structuring functions and morphological operators, morphological discretization, filtering, connectivity and connected operators, morphological shape analysis and interpolation, texture analysis, morphological segmentation, morphological multiresolution techniques and scale-spaces, and morphological algorithms and applications. Audience: The subject matter of this volume will be of interest to electrical engineers, computer scientists, and mathematicians whose research work is focused on the theoretical and practical aspects of nonlinear signal and image processing. It will also be of interest to those working in computer vision, applied mathematics, and computer graphics.
This book presents a new diagnostic information methodology to assess the quality of conversational telephone speech. For this, a conversation is separated into three individual conversational phases (listening, speaking, and interaction), and for each phase corresponding perceptual dimensions are identified. A new analytic test method allows gathering dimension ratings from non-expert test subjects in a direct way. The identification of the perceptual dimensions and the new test method are validated in two sophisticated conversational experiments. The dimension scores gathered with the new test method are used to determine the quality of each conversational phase, and the qualities of the three phases, in turn, are combined for overall conversational quality modeling. The conducted fundamental research forms the basis for the development of a preliminary new instrumental diagnostic conversational quality model. This multidimensional analysis of conversational telephone speech is a major landmark towards deeply analyzing conversational speech quality for diagnosis and optimization of telecommunication systems.
This book is dedicated to the analysis and design of analog CMOS nonlinear function synthesizer structures, based on original superior-order approximation functions. A variety of analog function synthesizer structures are discussed, based on accurate approximation functions. Readers will be enabled to implement numerous circuit functions with applications in analog signal processing, including exponential, Gaussian or hyperbolic functions. Generalizing the methods for obtaining these particular functions, the author analyzes superior-order approximation functions, which represent the core for developing CMOS analog nonlinear function synthesizers.
Ever since their invention in 1960, lasers have assumed tremendous importance in the fields of science, engineering and technology because of their use both in basic research and in various technological applications. Lasers: Theory and Applications 2nd Edition will provide a coherent presentation of the basic physics behind the working of the laser along with some of their most important applications. Numerical examples are scattered throughout the book for helping the student gain a better appreciation of the concepts and problems at the end of each chapter and provides the student a better understanding of the basics and help in applying the concepts to practical situations. This book serves as a text in a course on lasers and their applications for students majoring in various disciplines such as Physics, Chemistry and Electrical Engineering.
Silicon sensors integrated with readout circuits on one chip are now being considered for a wide and growing range of applications. Technological compatibility constraints and the need for economic large-scale production are now the major concerns if these devices are to become widely used in industry and medicine. This is the first book to attempt to evaluate the real prospects and limitations of integrated silicon smart sensors. It provides a thorough introduction to and review of, the field, covering both technical and economic issues critical to the future success of this technology.
This book is aimed at researchers, industry professionals and students interested in the broad ranges of disciplines related to condition monitoring of machinery working in non-stationary conditions. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO'2018, held on June 20 - 22, 2018, in Santander, Spain. The book describes both theoretical developments and a number of industrial case studies, which cover different topics, such as: noise and vibrations in machinery, conditioning monitoring in non-stationary operations, vibro-acoustic diagnosis of machinery, signal processing, application of pattern recognition and data mining, monitoring and diagnostic systems, faults detection, dynamics of structures and machinery, and mechatronic machinery diagnostics.
The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range - is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine and in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches and technologies. In this book we introduce and discuss one such novel approach -the radiation formed in a Crystalline Undulator -whereby electromagnetic radiation is generated by a bunch of ultra-relativistic particles channeling through a periodically bent crystalline structure. Under certain conditions, such a device can emit intensive spontaneous monochromatic radiation and even reach the coherence of laser light sources. Readers will be presented with the underlying fundamental physics and be familiarized with the theoretical, experimental and technological advances made during the last one and a half decades in exploring the various features of investigations into crystalline undulators. This research draws upon knowledge from many research fields - such as materials science, beam physics, the physics of radiation, solid state physics and acoustics, to name but a few. Accordingly, much care has been taken by the authors to make the book as self-contained as possible in this respect, so as to also provide a usefulintroduction to this emerging field to a broad readership of researchers and scientist with various backgrounds. This new edition has been revised and extended to take recent developments in the field into account."
Ultrafast diode lasers offer a variety of applications including high-bit-rate optical fiber communication lines, ultrafast optical data processing, optical computing radar systems, optoelectronic measurement applications and instrumentation. This work introduces this developing field, from basic physical principles to applications. It is intended for scientists working in the fields of optical communications and data processing, ultrafast electronics and laser physics.
The book focuses on the different aspects of sensing technology, i.e. high reliability, adaptability, recalibration, information processing, data fusion, validation and integration of novel and high performance sensors specifically aims to monitor agricultural and environmental parameters. This book is dedicated to Sensing systems for Agricultural and Environmental Monitoring offers to variety of users, namely, Master and PhD degree students, researchers, practitioners, especially Agriculture and Environmental engineers. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.
This book reports on the latest advances in the analysis of non-stationary signals, with special emphasis on cyclostationary systems. It includes cutting-edge contributions presented at the 7th Workshop on "Cyclostationary Systems and Their Applications," which was held in Grodek nad Dunajcem, Poland, in February 2014. The book covers both the theoretical properties of cyclostationary models and processes, including estimation problems for systems exhibiting cyclostationary properties, and several applications of cyclostationary systems, including case studies on gears and bearings, and methods for implementing cyclostationary processes for damage assessment in condition-based maintenance operations. It addresses the needs of students, researchers and professionals in the broad fields of engineering, mathematics and physics, with a special focus on those studying or working with nonstationary and/or cyclostationary processes.
This textbook covers the theoretical backgrounds and practical aspects of image, video and audio feature expression, e.g., color, texture, edge, shape, salient point and area, motion, 3D structure, audio/sound in time, frequency and cepstral domains, structure and melody. Up-to-date algorithms for estimation, search, classification and compact expression of feature data are described in detail. Concepts of signal decomposition (such as segmentation, source tracking and separation), as well as composition, mixing, effects, and rendering, are discussed. Numerous figures and examples help to illustrate the aspects covered. The book was developed on the basis of a graduate-level university course, and most chapters are supplemented by problem-solving exercises. The book is also a self-contained introduction both for researchers and developers of multimedia content analysis systems in industry.
We delight in using our eyes, particularly when puzzling over pictures. Art and illusionists is a celebration of pictures and the multiple modes of manipulating them to produce illusory worlds on flat surfaces. This has proved fascinating to humankind since the dawning of depiction. Art and illusionists is also a celebration of the ways we see pictures, and of our ability to distil meaning from arrays of contours and colours. Pictures are not only a source of fascination for artists, who produce them, but also for scientists, who analyse the perceptual effects they induce. Illusions provide the glue to cement the art and science of vision. Painters plumb the art of observation itself whereas scientists peer into the processes of perception. Both visual artists and scientists have produced patterns that perplex our perceptions and present us with puzzles that we are pleased to peruse. Art and illusionists presents these two poles of pictorial representation as well as presenting novel 'perceptual portraits' of the artists and scientists who have augmented the art of illusion. The reader can experience the paradoxes of pictures as well as producing their own by using the stereoscopic glasses enclosed and the transparent overlay for making dynamic moire patterns.
Perspectives in Spread Spectrum brings together studies and recent work on six exciting topics from the spread spectrum arts. The book gives a wide, collective view of trends, ideas, and techniques in the spread spectrum discipline, due to the authors' extensive work on spread spectrum techniques and applications from different vantage points. The inexorable march of electronics towards ever faster, ever smaller, and ever more powerful electronic and optical circuitry has wrought, and will continue to enable, profound changes in the spread spectrum arts, by allowing increasingly complex signalling waveforms and statistical tests to be implemented as the theory beyond spread spectrum continues to evolve. Perspectives in Spread Spectrum is divided into six chapters. The first chapter deals with sequence spreading design. There is not a single metric for design of spreading sequences; rather, the design is ideally tailored to the specific scenario of usage. This chapter delves into recent and very promising synthesis work. The second chapter deals with OFDM techniques. As channels become wider and trans-channel fading (or jamming) becomes frequency selective across the band, OFDM techniques may provide a powerful alternative design perspective. The third chapter is a generalization of the venerable Walsh functions. A new modulation scheme, Geometric Harmonic Modulation, GHM for short, is reviewed and characterized as a form of OFDM. From GHM, a further generalization of the Walsh functions is derived for non-binary signalling. The fourth chapter is concerned with some new and exciting results regarding the follower jammer paradigm. A counter-countermeasure technique is reviewed, notable for its counterintuitive characteristic which can be understood from a simple yet elegant game framework. The fifth chapter recounts some results pertaining to random coding for an optical spread spectrum link. The technique is based on laser speckle statistics and uses a coherent array of spatial light modulators at the transmitter but allows the receiver to be realized as a spatially distributed radiometric and therefore incoherent structure. The sixth and final chapter looks at an important and interesting application of spread spectrum to accurately locate a wideband, 'bent pipe', satellite transponder. It is, in a strong sense, an inverted GPS technique. Perspectives in Spread Spectrum serves as an excellent reference and source of ideas for further research, and may be used as a text for advanced courses on the topic.
The current volume "New Advances in Intelligent Signal Processing" contains extended works based on a careful selection of papers presented originally at the jubilee sixth IEEE International Symposium on Intelligent Signal Processing (WISP'2009), held in Budapest Hungary, August 26-28, 2009 - celebrating the 10 years anniversary of the WISP event series. The present book does not intent to be an overall survey on the fields of interest of the area, but tries to find topics which represent new, hot, and challenging problems. The book begins with papers investigating selected problems of Modeling, Identification, and Clustering such as fuzzy random variables, evolutionary multi-objective neural network models, a structural learning model of neural networks within a Boltzmann machine, a robust DNA-based clustering techniques, and the advances of combining multi-criteria analysis of signals and pattern recognition using machine learning principles. In the second part of the book Image Processing is treated. The carefully edited chapters deal with fuzzy relation based image enhancement, image contrast control technique based on the application of ukasiewicz algebra operators, low complexity situational models of image quality improvement, flexible representation of map images to quantum computers, and object recognition in images. The last chapter presents an image processing application for elderly care, performing real-time 3D tracking based on a new evaluative multi-modal algorithm."
This book describes the algorithms and computer architectures used to create and analyze photographs in modern digital cameras. It also puts the capabilities of digital cameras into context for applications in art, entertainment, and video analysis. The author discusses the entire range of topics relevant to digital camera design, including image processing, computer vision, image sensors, system-on-chip, and optics, while clearly describing the interactions between design decisions at these different levels of abstraction. Readers will benefit from this comprehensive view of digital camera design, describing the range of algorithms used to compose, enhance, and analyze images, as well as the characteristics of optics, image sensors, and computing platforms that determine the physical limits of image capture and computing. The content is designed to be used by algorithm designers and does not require an extensive background in optics or electronics.
The emergence of highly efficient short-wavelength laser diodes based on the III-V compound semiconductor GaN has not only enabled high-density optical data storage, but is also expected to revolutionize display applications. Moreover, a variety of scientific applications in biophotonics, materials research and quantum optics can benefit from these versatile and cost-efficient laser light sources in the near-UV to green spectral range. This thesis describes the device physics of GaN-based laser diodes, together with recent efforts to achieve longer emission wavelengths and short-pulse emission. Experimental and theoretical approaches are employed to address the individual device properties and optimize the laser diodes toward the requirements of specific applications.
Optical microscopy and associated technologies advanced quickly after the introduction of the laser. The techniques have stimulated further development of optical imaging theory, including 3-dimensional microscopy imaging theory in spatial and frequency domains, the theory of imaging with ultrashort-pulse beams and aberration theory for high-numerical-aperture objectives. This book introduces these new theories in terms of modern optical microscopy. It consists of seven chapters including an introduction. The chapters are organized to minimize cross-referencing. Comparisons with classical imaging theory are made when the new imaging theory is introduced. The book is intended for senior undergraduate students in courses on optoelectronics, optical engineering, photonics, biophotonics and applied physics, after they have completed modern optics or a similar subject. It is also a reference for other scientists interested in the field.
This reference presents a system analysis of the fibre-optic gyro. Drawing on 15 years of research and developments, it describes the concepts that have emerged as the preferred solutions for obtaining a practical device, and provides access to the information needed to know about optics, single-mode fibre optics and integrated optics to understand the fibre gyro.
This book is intended for students and professionals who are interested in the field of digital signal processing of delta-sigma modulated sequences. The overall focus is on the development of algorithms and circuits for linear, non-linear, and mixed mode processing of delta-sigma modulated pulse streams. The material presented here is directly relevant to applications in digital communication, DSP, instrumentation, and control.
Metamaterials are artificially designed materials engineered to acquire their properties by their specific structure rather than their composition. They are considered a major scientific breakthrough and have attracted enormous attention over the past decade. The major challenge in obtaining an optical metamaterial active at visible frequencies is the fabrication of complex continuous metallic structures with nano metric features. This thesis presents the fabrication and characterization of optical metamaterials made by block copolymer self assembly. This approach allows fabrication of an intriguing and complex continuous 3D architecture called a gyroid, which is replicated into active plasmonic materials such as gold. The optical properties endowed by this particular gyroid geometry include reduction of plasma frequency, extraordinarily enhanced optical transmission, and a predicted negative refractive index. To date, this is the 3D optical metamaterial with the smallest features ever made.
The book is designed to provide graduate students and research novices with an introductory review of recent developments in the field of magneto-optics. The field encompasses many of the most important subjects in solid state physics, chemical physics and electronic engineering. The book deals with (1) optical spectroscopy of paramagnetic, antiferromagnetic, and ferromagnetic materials, (2) studies of photo-induced magnetism, and (3) their applications to opto-electronics. Many of these studies originate from those of ligand-field spectra of solids, which are considered to have contributed to advances in materials research for solid-state lasers.
Optical Solitons represent one of the most exciting and fascinating concepts in modern communications, arousing special interest due to their potential applications in optical fibre communication. This volume focuses on the explicit integration of analytical and experimental methods in nonlinear fibre optics and integrated optics. It covers all important recent technical issues in optical-soliton communication. For example, individual chapters are devoted to topics such as dispersion management and fibre Bragg grating. All authors are leading authorities in their fields. |
![]() ![]() You may like...
|