![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics
Laser Surface Modification of Biomaterials: Techniques and Applications covers this expanding field, which has many potential applications, including biomaterials. Laser surface modification of biomaterials enables the production of hybrid materials with different functionality in the bulk as well as the thin, sub-micrometer surface layer. This book will provide readers with a comprehensive review of the technology and its applications. Chapters in Part 1 look at the techniques and considerations of laser surface modification, while Part 2 reviews laser surface modification techniques of the most important classes of biomaterials, with a final set of chapters discussing application specific laser surface modification.
Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed to understand the latest advances in the field. After an introduction to the area, chapters two and three cover the essential topics of electrodynamics, quantum mechanics, and computation as they relate to nanophotonics. Subsequent chapters explore materials for nanophotonics, including nanoparticles, photonic crystals, nanosilicon, nanocarbon, III-V, and II-VI semiconductors. In addition, fabrication and characterization techniques are addressed, along with the importance of plasmonics, and the applications of nanophotonics in devices such as lasers, LEDs, and photodetectors.
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Biophotonics for Medical Applications presents information on the interface between laser optics and cell biology/medicine. The book discusses the development and application of photonic techniques that aid the diagnosis and therapeutics of biological tissues in both healthy and diseased states. Chapters cover the fundamental technologies used in biophotonics and a wide range of therapeutic and diagnostic applications.
Combining the positive characteristics of microfluidics and optics, microstructured optical fibres (MOFs) have revolutionized the field of optoelectronics. Tailored guiding, diffractive structures and photonic band-gap effects are used to produce fibres with highly specialised, complex structures, facilitating the development of novel kinds of optical fibre sensors and actuators. Part One outlines the key materials and fabrication techniques used for microstructured optical fibres. Microfluidics and heat flows, MOF-based metamaterials, novel and liquid crystal infiltrated photonic crystal fibre (PCF) designs, MOFs filled with carbon nanotubes and melting of functional inorganic glasses inside PCFs are all reviewed. Part Two then goes on to investigate sensing and optofluidic applications, with the use of MOFs in structural sensing, sensing units and mechanical sensing explored in detail. PCF's for switching applications are then discussed before the book concludes by reviewing MOFs for specific nucleic acid detection and resonant bio- and chemical sensing.
Industrial Tomography: Systems and Applications thoroughly explores the important tomographic techniques of industrial tomography, also discussing image reconstruction, systems, and applications. The text presents complex processes, including the way three-dimensional imaging is used to create multiple cross-sections, and how computer software helps monitor flows, filtering, mixing, drying processes, and chemical reactions inside vessels and pipelines. Readers will find a comprehensive discussion on the ways tomography systems can be used to optimize the performance of a wide variety of industrial processes.
The 4th edition of this popular Handbook continues to provide an easy-to-use guide to the many exciting new developments in the field of optical fiber data communications. With 90% new content, this edition contains all new material describing the transformation of the modern data communications network, both within the data center and over extended distances between data centers, along with best practices for the design of highly virtualized, converged, energy efficient, secure, and flattened network infrastructures. Key topics include networks for cloud computing, software
defined networking, integrated and embedded networking appliances,
and low latency networks for financial trading or other
time-sensitive applications. Network architectures from the leading
vendors are outlined (including Smart Analytic Solutions, Qfabric,
FabricPath, and Exadata) as well as the latest revisions to
industry standards for interoperable networks, including lossless
Ethernet, 16G Fiber Channel, RoCE, FCoE, TRILL, IEEE 802.1Qbg, and
more.
Comprises four parts, the first of which provides an overview of the topics that are developed from fundamental principles to more advanced levels in the other parts. Presents in the second part an in-depth introduction to the relevant background in molecular and cellular biology and in physical chemistry, which should be particularly useful for students without a formal background in these subjects. Provides in the third part a detailed treatment of microscopy techniques and optics, again starting from basic principles. Introduces in the fourth part modern statistical approaches to the determination of parameters of interest from microscopy data, in particular data generated by single molecule microscopy experiments. Uses two topics related to protein trafficking (transferrin trafficking and FcRn-mediated antibody trafficking) throughout the text to motivate and illustrate microscopy techniques
From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.
This book introduces various 3D printing systems, biomaterials, and cells for organ printing. In view of the latest applications of several 3D printing systems, their advantages and disadvantages are also discussed. A basic understanding of the entire spectrum of organ printing provides pragmatic insight into the mechanisms, methods, and applications of this discipline. Organ printing is being applied in the tissue engineering field with the purpose of developing tissue/organ constructs for the regeneration of both hard (bone, cartilage, osteochondral) and soft tissues (heart). There are other potential application areas including tissue/organ models, disease/cancer models, and models for physiology and pathology, where in vitro 3D multicellular structures developed by organ printing are valuable.
Technological advances in thermal imaging have had far-reaching impacts on the fields of biology and medicine. By studying the diverse applications in thermal imaging, significant contributions can be made in modern life sciences. Innovative Research in Thermal Imaging for Biology and Medicine is a thorough reference source that offers in-depth discussions on emerging advancements in thermal imaging techniques and provides interdisciplinary perspectives on its diverse applications. Highlighting relevant topics such as microvascular imaging, vascular optics, body cryotherapy, and myofascial trigger points, this publication is ideal for all academicians, graduate students, practitioners, and researchers who are interested in studying the latest advances in thermal imaging as it relates to medicine and biology.
This book introduces sonar system and acoustic channel model, average energy channel, coherent multipath channel, the theoretical basis for the stochastic time-varying space-variant channel, slowly time-varying coherent multipath channel, and reverberation channel. Based on the basic theory of underwater acoustic channels and the various characteristics of the marine acoustic environment factor, this textbook aims to help students understand the impact of the marine acoustic channel on the sonar system. It helps students to grasp underwater acoustic signal processing principles and obtain the ability to solve practical problems in underwater acoustic channel engineering. Finally, it aims at laying a foundation for the further sonar system design. This textbook is recommended for graduate or undergraduate students in the field of sonar signal processing, underwater acoustic engineering, as well as some related subjects of marine technology.
"Semiconductors and Semimetals" has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. Originally widely known as the "Willardson and Beer"
Series, it has succeeded in publishing numerous landmark volumes
and chapters. The series publishes timely, highly relevant volumes
intended for long-term impact and reflecting the truly
interdisciplinary nature of the field. The volumes in
"Semiconductors and Semimetals" have been and will continue to be
of great interest to physicists, chemists, materials scientists,
and device engineers in academia, scientific laboratories and
modern industry.
|
You may like...
Functional Materials from Carbon…
Sanjay J. Dhoble, Amol Nande, …
Paperback
R5,687
Discovery Miles 56 870
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Advances in Nonlinear Photonics
Giancarlo C. Righini, Luigi Sirleto
Paperback
R5,052
Discovery Miles 50 520
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
|