![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
Of Clocks and Time takes readers on a five-stop journey through the physics and technology (and occasional bits of applications and history) of timekeeping. On the way, conceptual vistas and qualitative images abound, but since mathematics is spoken everywhere the book visits equations, quantitative relations, and rigorous definitions are offered as well. The expedition begins with a discussion of the rhythms produced by the daily and annual motion of sun, moon, planets, and stars. Centuries worth of observation and thinking culminate in Newton's penetrating theoretical insights since his notion of space and time are still influential today. During the following two legs of the trip, tools are being examined that allow us to measure hours and minutes and then, with ever growing precision, the tiniest fractions of a second. When the pace of travel approaches the ultimate speed limit, the speed of light, time and space exhibit strange and counter-intuitive traits. On this fourth stage of the journey, Einstein is the local tour guide whose special and general theories of relativity explain the behavior of clocks under these circumstances. Finally, the last part of the voyage reverses direction, moving ever deeper into the past to explore how we can tell the age of "things" - including that of the universe itself.
This book uses new data from the very low radio frequency telescope LOFAR to analyse the magnetic structure in the giant radio galaxy NGC6251. This analysis reveals that the magnetic field strength in the locality of this giant radio galaxy is an order of magnitude lower than in other comparable systems. Due to the observational limitations associated with capturing such huge astrophysical structures, giant radio galaxies are historically a poorly sampled population of objects; however, their preferential placement in the more rarefied regions of the cosmic web makes them a uniquely important probe of large-scale structures. In particular, the polarisation of the radio emissions from giant radio galaxies is one of the few tools available to us that can be used to measure magnetic fields in regions where the strength of those fields is a key differentiator for competing models of the origin of cosmic magnetism. Low frequency polarisation data are crucial for detailed analyses of magnetic structure, but they are also the most challenging type of observational data to work with. This book presents a beautifully coupled description of the technical and scientific analysis required to extract valuable information from such data and, as the new generation of low frequency radio telescopes reveals the larger population of giant radio galaxies, it offers a significant resource for future analyses.
This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.
This thesis focuses on the very high Mach number shock wave that is located sunward of Saturn's strong magnetic field in the continuous high-speed flow of charged particles from the Sun (the solar wind). The author exploits the fact that the Cassini spacecraft is the only orbiter in a unique parameter regime, far different from the more familiar near-Earth space, to provide in-situ insights into the unreachable exotic regime of supernova remnants. This thesis bridges the gap between shock physics in the Solar System and the physics of ultra-high Mach number shocks around the remnants of supernova explosions, since to date research into the latter has been restricted to theory, remote observations, and simulations.
One approach to learning about stellar populations is to study them at three different levels of resolution. First in our own galaxy; secondly from nearby galaxies where stars can still be resolved; and thirdly in remote galaxies in which the stellar population can only be studied in integrated light. This International Astronomical Union Symposium covered the range of galaxies in its study of their stellar populations. Interspersed with theoretical papers, the observational papers provide a presentation of the progress that has been made in the field.
This book provides detailed calculated values for the thermal radiative and thermodynamic functions of black-body radiation in finite spectral ranges. The results are presented in tabular form. The areas of thermal power generation, infrared medical diagnostics, solar power and nuclear generation, and astrophysics are included. A range of the thermal radiative and thermodynamic functions are calculated by the authors in the finite frequency/wavenumber/wavelength intervals at different temperatures. This book also contains the tables of the chromaticity coordinates and RGB parameters calculated for different color spaces (Rec.709 (HDTV), sRGB, Adobe RGB). A number of the optimization problems is formulated and solved for various thermal black-body radiative and thermodynamic functions in a finite range of frequencies.
This thesis presents a pioneering method for gleaning the maximum information from the deepest images of the far-infrared universe obtained with the Herschel satellite, reaching galaxies fainter by an order of magnitude than in previous studies. Using these high-quality measurements, the author first demonstrates that the vast majority of galaxy star formation did not take place in merger-driven starbursts over 90% of the history of the universe, which suggests that galaxy growth is instead dominated by a steady infall of matter. The author further demonstrates that massive galaxies suffer a gradual decline in their star formation activity, providing an alternative path for galaxies to stop star formation. One of the key unsolved questions in astrophysics is how galaxies acquired their mass in the course of cosmic time. In the standard theory, the merging of galaxies plays a major role in forming new stars. Then, old galaxies abruptly stop forming stars through an unknown process. Investigating this theory requires an unbiased measure of the star formation intensity of galaxies, which has been unavailable due to the dust obscuration of stellar light.
This book lays the foundations of gas- and fluid dynamics.The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.
In his PhD dissertation Martin Bo Nielsen performs observational studies of rotation in stars like the Sun. The interior rotation in stars is thought to be one of the driving mechanisms of stellar magnetic activity, but until now this mechanism was unconstrained by observational data. NASA's Kepler space mission provides high-precision observations of Sun-like stars which allow rotation to be inferred using two independent methods: asteroseismology measures the rotation of the stellar interior, while the brightness variability caused by features on the stellar surface trace the rotation of its outermost layers. By combining these two techniques Martin Bo Nielsen was able to place upper limits on the variation of rotation with depth in five Sun-like stars. These results suggest that the interior of other Sun-like stars also rotate in much the same way as our own Sun.
This accessible and entertaining biography chronicles the life and triumphs of astronomer Jan Hendrik Oort, who helped lay the foundations of modern astronomy in the 20th century. The book puts into context some of Oort's most significant achievements, including his discovery that the Milky Way rotates, as well as his famous hypothesis that our Solar System is surrounded by a reservoir of comets - now simply known as the Oort Cloud. Written by Oort's former student, this fascinating story also delves into Oort's pivotal role in the foundation of major astronomical facilities, including radio telescopes in the Netherlands and the European Southern Observatory (ESO), which now operates the most successful astronomical observatories in the world. The book draws extensively on new archival research through the Oort Archives, along with personal reminiscences by Oort's son and astronomer-grandson, to paint a more detailed picture of Oort's life not just as an astronomer, but also as a husband, father, and citizen. The strong public interest in comets triggered by the Rosetta mission to comet 67P/Churyumov-Gerasimenko and the recently discovered interstellar comet in the Solar System make this book particularly timely.
This thesis describes the application of a Monte Carlo radiative transfer code to accretion disc winds in two types of systems spanning 9 orders of magnitude in mass and size. In both cases, the results provide important new insights. On small scales, the presence of disc winds in accreting white dwarf binary systems has long been inferred from the presence of ultraviolet absorption lines. Here, the thesis shows that the same winds can also produce optical emission lines and a recombination continuum. On large scales, the thesis constructs a simple model of disc winds in quasars that is capable of explaining both the observed absorption and emission signatures - a crucial advance that supports a disc-wind based unification scenario for quasars. Lastly, the thesis also includes a theoretical investigation into the equivalent width distribution of the emission lines in quasars, which reveals a major challenge to all unification scenarios.
New York Times bestseller Journey into the universe through the most spectacular sights in astronomy in stereoscopic 3D Welcome to the Universe in 3D takes you on a grand tour of the observable universe, guiding you through the most spectacular sights in the cosmos-in breathtaking 3D. Presenting a rich array of stereoscopic color images, which can be viewed in 3D using a special stereo viewer that folds easily out of the cover of the book, this book reveals your cosmic environment as you have never seen it before. Astronomy is the story of how humankind's perception of the two-dimensional dome of the sky evolved into a far deeper comprehension of an expanding three-dimensional cosmos. This book invites you to take part in this story by exploring the universe in depth, as revealed by cutting-edge astronomical research and observations. You will journey from the Moon through the solar system, out to exoplanets, distant nebulas, and galaxy clusters, until you finally reach the cosmic microwave background radiation (or CMB), the most distant light we can observe. The distances to these celestial wonders range from 1.3 light-seconds to 13.8 billion light-years. Along the way, the authors explain the fascinating features of what you are seeing, including how the 3D images were made using the same technique that early astronomers devised to measure distances to objects in space. The dramatic 3D images in this one-of-a-kind book will astonish you, extending your vision out to the farthest reaches of the universe. You will never look up into the night sky the same way again.
Cosmical Aerodynamics - Why was it so Difficult?.- Shaping Planetary Nebulae.- Investigating the Kinematics of the Faint Giant Haloes of Planetary Nebulae.- Shock Modelling of Planetary Nebulae.- Imaging Polarimetry of Proto-Planetary Nebulae.- IRAS 17423-1755: a BQ[ ] Star with a Variable Velocity Outflow.- Spectroscopic Constraints on Outflows from BN-type Objects.- First Wavelet Analysis of Emission Line Variations in Wolf-Rayet Stars-Turbulence in Hot-Star Outflows.- Complex Structure Associated with the Wolf-Rayet Star WR147.- The Importance of Continuum Radiation for the Stellar Wind Hydrodynamics of Hot Stars.- Herbig Ae/Be Stars.- 3-D Radiative Line Transfer for Be Star Envelopes.- Radiatively Driven Winds Using Lagrangian Hydrodynamics.- Parametric Determination of the Inclination of Keplerian Circumstellar Discs from Spectropolarimetric Profiles of Scattered Lines.- Observational Evidence for Global Oscillations in Be Star Disks.- Coupled Stellar Jet/Molecular Outflow Models.- Modelling Jet-Driven Molecular Outflows.- Jets.- A Simulation of a Jet with the Hiccups.- Interactions Between Molecular Outflows and Optical Jets.- Proper Motion Measurements in the HH 46/47 Outflow.- The Serpens Radio Jet: Evidence of Precession or Nutation.- Fragmentation and Heating of Streamers in Orion.- Highly Supersonic Molecular Flows in Wind-Clump Boundary Layers.- High Density Tracers in Outflow Regions: NH3 vs. CS.- Modelling the Constancy of X.- Gas-Grain Interaction in the Low Mass Star-Forming Region B335.- The Structure and Dynamics of M17SW.- The Hydrodynamics of Bipolar Explosions.- Shock-Heated Gas in the Outbursts of Classical Novae.- The Crab Nebula Revisited.- Pulsar Magnetospheres: Classical and Quasi-Classical Descriptions.- The Global Structure of the Insterstellar Medium.- A Power Spectrum Description of Galactic Neutral Hydrogen.- A Statistical Description of Astrophysical Turbulence.- Rosat Wide Field Camera Data and the Temperature of the Interstellar Medium.- Hierarchial Galactic Dynamo and Seed Magnetic Field Problem.- Cosmic Ray Diffusion at Energies of 1 MeV to 105 GeV.- Alfvenic Waves and Alignment of Large Grains.- An Interstellar Thermostat: Gas Temperature Regulated by Grain Charge.- Recent Optical Observations of Circumstellar and Interstellar Phenomena.- Internal Motions of HII Regions and Giant HII Regions.- High-Speed Flows in the Vicinity of the Trapezium Stars.- The Orion Nebula: Structure, Dynamics, and Population.- An Evolutionary Model for the Wolf Rayet Nebula NGC 2539.- Supersonic Turbulence in Giant Extragalactic HII Regions.- The Dynamics of the Ring Nebula Surrounding the LBV Candidate He 3-519.- Turbulent Mixing in Wind-Blown HII Regions.- Shock Wave Structure in the Cygnus Loop.- Catastrophic Cooling Diagnostics.- Star Formation in Shocked Layers.- Binary and Multiple Star Formation.- Galactic Fountains.- The Solution Topology of Galactic Winds.- Galactic Scale Gas Flows in Colliding Galaxies: 3-Dimensional, N-Body/Hydrodynamics Experiments.- Gas Flow in a Two Component Galactic Disk.- How Faithful Are N-Body Simulations of Disc Galaxies? - Artificial Suppression of Gaseous Dynamical Instabilities.- Long-Lived Spiral Structure in N-Body Simulations: Work in Progress.- The Use of Gravitational Microlensing to Scan the Structure of BAL QSOs.- Anomalous Component Motion in the MAS Double Radio Source 0646+600.- Effects of Dense Medium Surrounding Galactic-Sized Radio Sources.- 8.4 Ghz Vla Observations of the CfA Seyfert Sample.- Relativistic Jet Simulations.- Active Galactic Nuclei Flow Velocities and the Highest Energy Cosmic Rays.- Hidden Broad Line Regions and Anisotropy in AGN.- The Starburst Galaxy NGC1808: Another M82?.- List of Forthcoming Papers.- The 'KLUWER' LaTeX Style File.
The investigation of discrete symmetries is a fascinating subject which has been central to the agenda of physics research for 50 years, and has been the target of many experiments, ongoing and in preparation, all over the world. This book approaches the subject from a somewhat less traditional angle: while being self-contained and suitable to the reader who wants to acquire a solid knowledge of the topic, it puts more emphasis on the experimental aspects of the field, trying to provide a wider picture than usual and to convey the intellectual challenge of experimental physics. The book includes the related connection to phenomenology, a purpose for which the precision experiments in this field - often rather elegant and requiring a good amount of ingenuity - are very well suited. The book discusses discrete symmetries (parity, charge conjugation, time reversal, and of course CP symmetry) in microscopic (atomic, nuclear, and particle) physics, and includes the detailed description of some key or representative experiments. The book discusses their principles and challenges more than the historical development. The main past achievements and the most recent developments are both included. The level goes from introductory to advanced. While mainly addressed to graduate students, the book can also be useful to undergraduates (by skipping some of the more advanced sections, and utilizing the brief introductions to some topics in the appendices), and to young researchers looking for a wider modern overview of the issues related to CP symmetry.
This book focuses on understanding the stellar populations of massive star clusters and aims to investigate the origin, evolution and properties of binary systems, their collision products, as well as the general characteristics (e.g. ages, metal content) of stellar population(s) in star clusters. It introduces the basic background knowledge of various stellar populations in star clusters as well as their formation, interaction and evolution and offers high impact observational results on our understanding of the formation and evolution mode of star clusters. Based on these discoveries, this book proposes a series of future projects that can shed light on these topics. The research introduced in this book reveals key features of star clusters formation and by extension how all stars formed in our universe.
This thesis discusses the evolution of galaxies through the study of the morphology, kinematics, and star formation properties of a sample of nearby galaxies. The main body of the thesis describes the kinematic observations with the GHaFAS Fabry-Perot instrument on the William Herschel Telescope of a sample of 29 spiral galaxies. The work is closely related to the Spitzer Survey of Stellar Structure in Galaxies, and uses the mid-infrared data of that survey to determine key parameters of the galaxies studied. From these data, important results are obtained on streaming and other non-circular motions in galaxies, on the distribution and rates of star formation, and on how correlations of these parameters and of the rotation curve shape with basic galaxy parameters yield clues on the evolutionary processes taking place in disk galaxies.
This thesis addresses two very different but equally important topics in the very broad fields of astrophysics and cosmology: (I) the generation of cosmological magnetic fields and (II) gravitational fragmentation of the Cosmic Web. All mathematical developments are completed by illuminating physical interpretations, and the thesis, which is guided by existing observations, is purely theoretical. In part I, the author further develops a magnetogenesis model proposed in the literature, providing an unprecedented level of physical understanding. He demonstrates that the physics of photoionisation is very likely to have premagnetised, at a relevant level, the entire Universe at the early epoch of the formation of the first luminous sources. In part II, the author adapts the tools of plasma spectral theory to the context of gravitational instability of the baryonic gas within the stratified structures of the Cosmic Web. He skillfully derives the wave equation governing the growth of perturbations and explores various equilibrium configurations, in planar and cylindrical geometries characteristic of cosmic walls and filaments, for isothermal and polytropic conditions, with or without an external gravitational background. Clearly structured and written in pedagogical style, this outstanding thesis puts the results into perspective and highlights the merits and limitations of the various approaches explored.
This prizewinning PhD thesis presents a general discussion of the orbital motion close to solar system small bodies (SSSBs), which induce non-central asymmetric gravitational fields in their neighborhoods. It introduces the methods of qualitative theory in nonlinear dynamics to the study of local/global behaviors around SSSBs. Detailed mechanical models are employed throughout this dissertation, and specific numeric techniques are developed to compensate for the difficulties of directly analyzing. Applying this method, several target systems, like asteroid 216 Kleopatra, are explored in great detail, and the results prove to be both revealing and pervasive for a large group of SSSBs.
An almost complete collection of the papers given at the International Workshop on Imaging in High Energy Astronomy (Anacapri, Italy, 1994). These proceedings, which concentrate on imaging above 10 keV, represent the state of the art in the field, resulting from the success of many missions (I.C. Granat and CGRO) carrying detectors for high energy astronomy with imaging capabilities. The main topics of the book are Bragg concentrators, coded mask-modulation collimators, double Compton telescopes, the occultation method, tracking chambers, and new experimental techniques. The book also contains some papers dealing with image reconstruction and processing, with an emphasis on the above techniques.
This book focuses on the equation of state (EoS) of compact stars, particularly the intriguing possibility of the "quark star model." The EoS of compact stars is the subject of ongoing debates among astrophysicists and particle physicists, due to the non-perturbative property of strong interaction at low energy scales. The book investigates the tidal deformability and maximum mass of rotating quark stars and triaxially rotating quark stars, and compares them with those of neutron stars to reveal significant differences. Lastly, by combining the latest observations of GW170817, the book suggests potential ways to distinguish between the neutron star and quark star models.
This book focuses on new experimental and theoretical advances concerning the role of strange and heavy-flavour quarks in high-energy heavy-ion collisions and in astrophysical phenomena. The topics covered include * Strangeness and heavy-quark production in nuclear collisions and hadronic interactions, * Hadron resonances in the strongly-coupled partonic and hadronic medium, * Bulk matter phenomena associated with strange and heavy quarks, * QCD phase structure, * Collectivity in small systems, * Strangeness in astrophysics,* Open questions and new developments.
The thesis presents a tool to create rubble pile asteroid simulants for use in numerical impact experiments, and provides evidence that the asteroid disruption threshold and the resultant fragment size distribution are sensitive to the distribution of internal voids. This thesis represents an important step towards a deeper understanding of fragmentation processes in the asteroid belt, and provides a tool to infer the interior structure of rubble pile asteroids. Most small asteroids are 'rubble piles' - re-accumulated fragments of debris from earlier disruptive collisions. The study of fragmentation processes for rubble pile asteroids plays an essential part in understanding their collisional evolution. An important unanswered question is "what is the distribution of void space inside rubble pile asteroids?" As a result from this thesis, numerical impact experiments can now be used to link surface features to the internal structure and therefore help to answer this question. Applying this model to asteroid Steins, which was imaged from close range by the Rosetta spacecraft, a large hill-like structure is shown to be most likely primordial, while a catena of pits can be interpreted as evidence for the existence of fracturing of pre-existing internal voids.
This volume collects the contributions to the 10th European Workshop on White Dwarfs held in Blanes, Spain, in June 1996. The Workshop gathered together a number of specialists working in this area of research and provided an updated description of the current work of the field as well as its connections with other topics. This text provides a snapshot of current understanding of the origin, structure and evolution of white dwarf stars from both the theoretical and the observational points of view. It also takes into account the properties of white dwarfs as members of binary systems, stellar clusters and galactic populations.
This book focuses on the non-traditional branches of physics and mechanics of shock waves that have arisen recently in connection with the intensive study of these waves in a wide variety of phenomena - from nuclear matter to clusters of galaxies. The book is devoted to the various physical phenomena and properties of intense shock waves. The author addresses methods of generation, diagnostics, as well as theoretical methods for describing shock waves at extremely high pressures and temperatures in laboratory and quasi-laboratory conditions. The state of materials with high energy density generated by shock wave compression is discussed. In addition, the book aims to systematize, generalize, and describe from a universal viewpoint the extensive theoretical and experimental material on the physics of high energy densities - the physics and mechanics of intense shock waves. The book is based on lectures delivered by the author at the Moscow Institute of Physics and Technology, the Higher School of Physics of Rosatom State Nuclear Energy Corporation, as well as overviews presented at many scientific conferences and symposia. It is useful to a wide range of researchers in natural sciences, giving them access to original works and allowing them to navigate the fascinating problems of the modern science of intense shock waves.
A decade of observations of the Sun with NASA's Solar Maximum Mission satellite has led to many discoveries in solar physics and atomic physics. While the analysis of the data is still continuing, a huge body of literature has now been published interpreting results from the mission. This book collects a review of these results in a single volume to provide a snapshot, as it were, of the current state of knowledge of solar physics. It will thus be a useful tool for both teaching and research, as well as a guide to planners of future missions to investigate the Sun. Individual chapters, each written by an expert in solar physics, cover such topics as: z Variations in the solar irradiance z Active regions of the Sun z The corona: elemental abundances; coronal mass ejections z Chromospheric evaporation z Solar flares; ultraviolet flares; nonthermal flare emissions z Flare dynamics; preflare activity; the gradual phase of flares; particle acceleration in flares z Spectroscopy and atomic physics z Solar-terrestrial science z The solar-stellar connection z Comet observations z Cosmic studies |
![]() ![]() You may like...
Jews of Kaiserstrasse - Mainz, Germany
Michael S Phillips
Hardcover
Near Normal Man - Survival with Courage…
Ben Stern, Charlene Stern
Hardcover
R732
Discovery Miles 7 320
Productivity with Health, Safety, and…
Lakhwinder Pal Singh, Arvind Bhardwaj, …
Hardcover
R5,410
Discovery Miles 54 100
|