![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
How does it happen that billions of stars can cooperate to produce the beautiful spirals that characterize so many galaxies, including ours? This book reviews the history behind the discovery of spiral galaxies and the problems faced when trying to explain the existence of spiral structure within them. In the book, subjects such as galaxy morphology and structure are addressed as well as several models for spiral structure. The evidence in favor or against these models is discussed. The book ends by discussing how spiral structure can be used as a proxy for other properties of spiral galaxies, such as their dark matter content and their central supermassive black hole masses, and why this is important.
This book discusses key theoretical aspects concerning the formation of the solar wind: the most essential building block in the heliosphere, in which planets orbit. To understand the influence of solar activity on planetary magnetospheres and atmospheres, we need to first understand the origin of the solar wind, which is still under debate. This book presents the outcomes of state-of-the-art numerical simulations of solar wind acceleration, including the first three-dimensional simulation of the turbulence-driven solar wind model. One of the book's goals is to include compressional effects in the dynamics of solar wind turbulence; accordingly, it discusses parametric decay instability in detail. Several key aspects that are relevant to the Parker Solar Probe observations are also discussed. Given its scope, the book plays a key role in bridging the gap between the theory of magnetohydrodynamic turbulence and current/future in-situ observations of the solar wind. This book is based on the Ph.D. thesis by the author, which won the 2019 International Astronomical Union Division E Ph.D. prize.
This book provides a general introduction to the rapidly developing astrophysical frontier of stellar tidal disruption, but also details original thesis research on the subject. This work has shown that recoiling black holes can disrupt stars far outside a galactic nucleus, errors in the traditional literature have strongly overestimated the maximum luminosity of "deeply plunging" tidal disruptions, the precession of transient accretion disks can encode the spins of supermassive black holes, and much more. This work is based on but differs from the original thesis that was formally defended at Harvard, which received both the Roger Doxsey Award and the Chambliss Astronomy Achievement Student Award from the American Astronomical Society.
Nature is characterized by a number of physical laws and fundamental dimensionless couplings. These determine the properties of our physical universe, from the size of atoms, cells and mountains to the ultimate fate of the universe as a whole. Yet it is rather remarkable how little we know about them. The constancy of physical laws is one of the cornerstones of the scientific research method, but for fundamental couplings this is an assumption with no other justification than a historical assumption. There is no 'theory of constants' describing their role in the underlying theories and how they relate to one another or how many of them are truly fundamental. Studying the behaviour of these quantities throughout the history of the universe is an effective way to probe fundamental physics. This explains why the ESA and ESO include varying fundamental constants among their key science drivers for the next generation of facilities. This symposium discussed the state-of-the-art in the field, as well as the key developments anticipated for the coming years.
This thesis develops and establishes several methods to determine the detailed geometric architecture of transiting exoplanetary systems (planets orbiting around, and periodically passing in front of, stars other than the sun) using high-precision photometric data collected by the Kepler space telescope. It highlights the measurement of stellar obliquity - the tilt of the stellar equator with respect to the planetary orbital plane(s) - and presents methods for more precise obliquity measurements in individual systems of particular interest, as well as for measurements in systems that have been out of reach of previous methods. Such information is useful for investigating the dynamical evolution of the planetary orbit, which is the key to understanding the diverse architecture of exoplanetary systems. The thesis also demonstrates a wide range of unique applications of high-precision photometric data, which expand the capability of future space-based photometry.
Regularized equations of motion can improve numerical integration for the propagation of orbits, and simplify the treatment of mission design problems. This monograph discusses standard techniques and recent research in the area. While each scheme is derived analytically, its accuracy is investigated numerically. Algebraic and topological aspects of the formulations are studied, as well as their application to practical scenarios such as spacecraft relative motion and new low-thrust trajectories.
Thomas Gold (1920-2004) had a curious mind that liked to solve problems. He was one of the most remarkable astrophysicists in the second half of the twentieth century, and he attracted controversy throughout his career. Based on a full-length autobiography left behind by Thomas Gold, this book was edited by the astrophysicist and historian of science, Simon Mitton (University of Cambridge). The book is a retrospective on Gold's remarkable life. He fled from Vienna in 1933, eventually settling in England and completing an engineering degree at Trinity College in Cambridge. During the war, he worked on naval radar research alongside Fred Hoyle and Hermann Bondi - which, in an unlikely chain of events, eventually led to his working with them on steady-state cosmology. In 1968, shortly after their discovery, he provided the explanation of pulsars as rotating neutron stars. In his final position at Cornell, he and his colleagues persuaded the US Defense Department to fund the conversion of the giant radio telescope at Arecibo in Puerto Rico into a superb instrument for radio astronomy. Gold's interests covered physiology, astronomy, cosmology, geophysics, and engineering. Written in an intriguing style and with an equally intriguing foreword by Freeman Dyson, this book constitutes an important historical document, made accessible to all those interested in the history of science. "
This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It is assumed that the readers are mathematically equipped with a reasonable knowledge in analysis, including basics of ordinary and partial differential equations and a good command of vector calculus and linear algebra. Each chapter concludes with bibliographical notes in which the authors briefly discuss the chapter's essential literature and give recommendations for further, deeper reading. Included in each chapter are a number of problems, some of them relevant to astrophysics and planetary science. The book is written for advanced undergraduate and graduate students, but will also prove a valuable source of reference for established researchers.
This thesis describes the experimental work that finally led to a successful measurement of coherent elastic neutrino-nucleus scattering-a process proposed forty-three years ago. The experiment was performed at the Spallation Neutron Source facility, sited at Oak Ridge National Laboratory, in Tennessee. Of all known particles, neutrinos distinguish themselves for being the hardest to detect, typically requiring large multi-ton devices for the job. The process measured here involves the difficult detection of very weak signals arising from nuclear recoils (tiny neutrino-induced "kicks" to atomic nuclei), but leads to a much larger probability of neutrino interaction when compared to all other known mechanisms. As a result of this, "neutrino technologies" using miniaturized detectors (the author's was handheld and weighed only 14 kg) become a possibility. A large community of researchers plans to continue studying this process, facilitating an exploration of fundamental neutrino properties that is presently beyond the sensitivity of other methods.
This book presents the fundamental concepts of the theory, illustrated by numerous examples of astrophysical applications. Classical concepts are combined with new developments and the authors demarcate what is well established and what is still under debate. To book illustrates how apparently complicated phenomena can be addressed and understood using well-known physical principles and equations within appropriate approximations and simplifications. For this purpose, a number of astrophysical examples are considered in greater detail than what is normally presented in a regular textbook. In particular, a number of nonlinear self-consistent models are considered, which is motivated by the latest observational data and modern theory.
This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.
Since the year 2000 the ESA Cluster mission has been investigating the small-scale structures and processes of the Earth's plasma environment, such as those involved in the interaction between the solar wind and the magnetospheric plasma, in global magnetotail dynamics, in cross-tail currents, and in the formation and dynamics of the neutral line and of plasmoids. This book contains presentations made at the 15th Cluster workshop held in March 2008. It also presents several articles about the Cluster Active Archive and its datasets, a few overview papers on the Cluster mission, and articles reporting on scientific findings on the solar wind, the magnetosheath, the magnetopause and the magnetotail.
Neutrinos continue to be the most mysterious and, arguably, the most fascinating particles of the Standard Model as their intrinsic properties such as absolute mass scale and CP properties are unknown. The open question of the absolute neutrino mass scale will be addressed with unprecedented accuracy by the Karlsruhe Tritium Neutrino (KATRIN) experiment, currently under construction. This thesis focusses on the spectrometer part of KATRIN and background processes therein. Various background sources such as small Penning traps, as well as nuclear decays from single radon atoms are fully characterized here for the first time. Most importantly, however, it was possible to reduce the background in the spectrometer by more than five orders of magnitude by eliminating Penning traps and by developing a completely new background reduction method by stochastically heating trapped electrons using electron cyclotron resonance (ECR). The work beautifully demonstrates that the obstacles and challenges in measuring the absolute mass scale of neutrinos can be met successfully if novel experimental tools (ECR) and novel computing methods (KASSIOPEIA) are combined to allow almost background-free tritium ss-spectroscopy.
The search for Dark Matter in the Universe has established itself as one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and future perspectives, stressing in particular the interplay between astro- and particle physics.
This volume integrates the latest findings on earliest life forms, identified and characterised in some of the oldest rocks on Earth. New material from prominent researchers in the field is presented and evaluated in the context of previous work. Emphasis is placed on the integration of analytical methods with observational techniques and experimental simulations. The opening section focuses on submarine hot springs that the majority of researchers postulates served as the cradle of life on Earth. In subsequent sections, evidence for life in strongly metamorphosed rocks such as those in Greenland is evaluated and early ecosystems identified in the well preserved Barberton and Pilbara successions in Southern Africa and Western Australia. The final section includes a number of contributions from authors with alternate perspectives on the evidence and record of early life on Earth. Audience This volume will be valuable to researchers and graduate students in biogeosciences, geochemistry, paleontology and geology interested in the origin of life on earth.
Astronomers learn much of what they know about the mass, brightness, and size of stars by observing binary systems, in which two stars orbit each other, periodically cutting off the others light. This book provides astronomers with a guide to specifying an astrophysical model for a set of observations, selecting an algorithm to determine the parameters of the model, and estimating the errors of the parameters.
This book presents recent results on the modelling of space plasmas with Kappa distributions and their interpretation. Hot and dilute space plasmas most often do not reach thermal equilibrium, their dynamics being essentially conditioned by the kinetic effects of plasma particles, i.e., electrons, protons, and heavier ions. Deviations from thermal equilibrium shown by these plasma particles are often described by Kappa distributions. Although well-known, these distributions are still controversial in achieving a statistical characterization and a physical interpretation of non-equilibrium plasmas. The results of the Kappa modelling presented here mark a significant progress with respect to all these aspects and open perspectives to understanding the high-resolution data collected by the new generation of telescopes and spacecraft missions. The book is directed to the large community of plasma astrophysics, including graduate students and specialists from associated disciplines, given the palette of the proposed topics reaching from applications to the solar atmosphere and the solar wind, via linear and quasilinear modelling of multi-species plasmas and waves within, to the fundamental physics of nonequilibrium plasmas.
Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn't restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. "A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Eric Gourgoulhon." (excerpt from the Foreword by Thibault Damour)
Most stars appear to show some degree of magnetic activity. Varying magnetic fields show up in the familiar sun-spot cycle and in similar activity in other cool stars. Many hot stars carry steady magnetic fields stronger than the average solar field and are well described as oblique rotators. A similar model is applicable to the rapidly rotating, enormously dense neutron stars with their far stronger fields, observed as radio and X-ray pulsars. Galactic magnetic fields may play a crucial role in star formation, and in the spectacular behaviour in galactic nuclei. Cosmical magnetism in general is a rapidly developing field, and this book has grown out of the lifelong work of an outstanding researcher in the area. An authoritative account with broad astronomical scope, its thorough, careful and well-argued approach makes it a fine addition to the professional literature. Most of the important topics are treated in mathematical depth with references to other relevant literature. Some of the studies, especially those on accretion discs, dynamos, and winds, are applicable to galaxies and galactic nuclei. This book is sure to become an invaluable professional reference and guide to current thinking in the field. It will be of particular interest to graduate students, for whom it shows how the area has developed and indicates the many challenging research problems, some of which may soon yield their secrets to the emerging supercomputers.
1. Paradigmatische Konstruktionen.- Unser heutiges Wirklichkeits-Verstandnis.- Wirklichkeits-Pluralismus.- Entstehen von Wirklichkeiten.- Lebendiger Vollzug von Wirklichkeiten.- Fruchtbare Vielfalt.- Simultane und sequenzielle Wirklichkeiten in der Lebenswelt.- Okkulte Wirklichkeiten und andere Geheimlehren.- Gefahrliche Verabsolutierungen.- 2. Farbe als Wirklichkeit.- Goethes Farbenlehre.- Physiologische Farben.- Farblose Bilder.- Farbige Bilder.- Farbige Schatten.- Schwach wirkende Lichter, subjektive Hoefe, pathologische Farben.- Physische Farben.- Dioptrische Farben der 1. Klasse.- Dioptrische Farben der 2. Klasse.- Das Phanomen der Refraktion.- Refraktion ohne Farberscheinung.- Farberscheinungen bei Linsen.- Grundzuge refraktionsbedingter Farberscheinungen.- Farberscheinungen bei Prismen.- Farberscheinungen an gro?en und kleinen wei?en Bildern.- Farberscheinungen an gro en und kleinen schwarzen Bildern.- Farberscheinungen sind nie statisch.- Zum Wesen von Licht und Farbe aus Goetheseher Sieht.- Wichtige, ganz allgemeine Begriffe.- Die Polaritat.- Die Steigerung.- Phanomen und Urphanomen.- Farbenkreis und Spektrogramm.- Newtons Farben des Liehts.- Newtons Experimente.- 1. Experiment.- 2. Experiment.- 3. Experiment.- 4. Experiment.- 5. Experiment.- Das We sen der Farbe.- Einfache Farbmetrik.- Das Auge.- Der Spektralfarbenzug.- Zwei Wirklichkeiten.- 3. Heilkundliche Wirkliehkeiten.- Chinesische Lebenswirkliehkeit.- Das Schafgarbenorakel.- Das Yin-Yang-Prinzip.- Shen und Kuei. Qi und Jing.- Die funf Elemente.- Chinesische Medizin.- Yin-Yang-Theorie.- Lebenssubstanzen.- Qi.- Blut und Safte.- Jing.- Shen.- Die Funktion der inneren Organe.- Die Leitbahnen oder die Meridiane.- Wie kommt es zur Disharmonie?.- Die Sechs UEbel.- Die sieben Emotionen.- Die Lebensweise.- Das Dishannoniemuster.- Ein Beispiel.- Ein simultanes Massenphanomen.- 4. Mikro-Wirklichkeiten.- Spiele als Mikro-Wirklichkeiten.- Definition des Spielbegriffes.- Die Vielfalt der Spiele.- Mikro-Wirklichkeiten im weiteren Sinn.- 5. Wirklichkeit eines Verbrechens.- Ein Beispiel aus der japanischen Literatur.- Eine neue Erzlihlung des Rashomon-Textes.- Die Aussage eines Holzfallers.- Die Aussage eines Wandergeistlichen.- Die Aussage eines Gerichtsdieners.- Die Aussage einer alten Frau.- Das Gestandnis des Raubers.- Die Aussage eines Gefahrten des Raubers.- Bericht eines Waldbewohners.- Die Beichte der Ehefrau in einem Kloster.- Der Geist des Toten spricht durch den Mund einer Wahrsagerin.- Vergewaltigung und Tod.- 6. Verwandlung von Wirklichkeiten.- Siddhartha. Eine indische Dichtung.- Die Brahmana-Welt.- Die Samana-Welt.- Die Buddha-Welt.- Die Menschenkinder-Welt.- Am Flu?.- 7. Magie und Damonie.- Weissagung.- Wirksarnkeit von Weissagungen.- Kassandra.- Die delphische Seherin.- Andere Fonnen der Weissagung.- Zauber und Damonen.- Magische Praktikep in der Volkskunst.- Magische Praktiken' der Antike.- Kirke verzaubert Manner.- Hexen morden Knaben.- Fluche verandern das Leben.- Fluchtafeln.- Ovids Ibis.- Schamanen.- Spuren des Schamanismus in der Neuzeit.- Antike Schamanen.- Orpheus.- Pythagoras.- Empedokles.- Vespasian.- Nekromantie.- Die Macht des Okkulten.- Magie und Damonie als Wirklichkeit?.- 8. Totalitare Wirklichkeiten.- Wahnsinn als totalitare Wirklichkeit.- Das Entstehen eines Wahnes.- Der logische Zusammenhang von Wahnideen.- Die weitgehende Unkorrigierbarkeit.- Gro?en und Verfolgungswahn.- Groe?enwahn.- Verfolgungswahn.- Paranoia erotica.- Eifersuchtsparanoia.- Religioeser Wahn mit erotischer Komponente.- Kraftentfaltung in totalitaren Wirklichkeiten.- Der Kriegstanz der Maori.- Atomare Bedrohung.- Extremsituationen in totalitaren Wirklichkeiten.- Der Tag des Blutes.- Der spontane Volkszorn.- Entgleisung einer Hochtechnologie.- Die Eigendynamik und die Hilflosigkeit.- 9. Chance und Bedrangnis.- Wirklichkeit ist eine Konstruktion. Der Urgrund ist ohne Eigenschaften.- Wirklichkeiten als Gewordenes.- Die Lebenswirklichkeit als Ausgangsbasi
Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book's emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpretations of such data, and an overview of the evolution of stars that brings them to an explosive endpoint. Part 2 goes into more detail on core-collapse and superluminous events: which kinds of stars produce them, and how do they do it? Part 3 is concerned with the stellar progenitors and explosion mechanisms of thermonuclear (Type Ia) supernovae. Part 4 is about consequences of supernovae and some applications to astrophysics and cosmology. References are provided in sufficient number to help the reader enter the literature.
With his Ph.D. thesis, presented here in the format of a "Springer Theses", Paul Fulda won the 2012 GWIC thesis prize awarded by the Gravitational Wave International Committee. The impact of thermal noise on future gravitational wave detectors depends on the size and shape of the interrogating laser beam. It had been known since 2006 that, in theory, higher-order Laguerre-Gauss modes could reduce thermal noise. Paul Fulda's research brings Laguerre-Gauss modes an enormous step forward. His work includes analytical, numerical and experimental work on table-top setups as well as experiments at the Glasgow 10m prototype interferometer. Using numerical simulations the LG33 mode was selected as the optical mode to be tested. Further research by Paul and his colleagues since then concentrated on this mode. Paul has developed and demonstrated simple and effective methods to create this mode with diffractive optics and successfully demonstrated its compatibility with the essential building blocks of gravitational wave detectors, namely, optical cavities, Michelson interferometers and opto-electronic sensing and control systems. Through this work, Laguerre-Gauss modes for interferometers have been transformed from an essentially unknown entity to a well understood option with an experimental basis.
This book discusses the state of the art of the basic theoretical and observational topics related to black hole astrophysics. It covers all the main topics in this wide field, from the theory of accretion disks and formation mechanisms of jet and outflows, to their observed electromagnetic spectrum, and attempts to measure the spin of these objects. Black holes are one of the most fascinating predictions of general relativity and are currently a very hot topic in both physics and astrophysics. In the last five years there have been significant advances in our understanding of these systems, and in the next five years it should become possible to use them to test fundamental physics, in particular to predict the general relativity in the strong field regime. The book is both a reference work for researchers and a textbook for graduate students.
The millimeter and sub-millimeter wavebands are unique in astronomy in containing several thousands of spectral lines of molecules as well as the thermal continuum spectrum of cold dust. They are the only bands in the electromagnetic spectrum in which we can detect the molecular gas reservoir for star formation and cold dust far away in high-redshift galaxies, and nearby in low-temperature cocoons of protostars and protoplanets. This book is based on and extensively updated from the lectures given during the Saas-Fee Advanced Course 38 on millimeter astronomy. It presents both the observing techniques and the scientific perspectives of observations at millimeter wavelengths, here in particular the star and planet formation. The chapters by Thomas L. Wilson and Stephane Guilloteau have been edited by Miroslava Dessauges-Zavadsky and Daniel Pfenniger. The book is part of the series of Saas-Fee Advanced Courses published since 1971. The targeted audience are graduate PhD and advanced undergraduate students, but the book also serves as reference for post-doctoral researchers or newcomers to the field. |
![]() ![]() You may like...
The Legend Of Zola Mahobe - And The…
Don Lepati, Nikolaos Kirkinis
Paperback
![]()
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R7,115
Discovery Miles 71 150
Graphs and Discrete Dirichlet Spaces
Matthias Keller, Daniel Lenz, …
Hardcover
R4,121
Discovery Miles 41 210
The Handbook of Multimodal-Multisensor…
Sharon Oviatt, Bjoern Schuller, …
Hardcover
R3,546
Discovery Miles 35 460
The Turn - Integration of Information…
Peter Ingwersen, Kalervo Jarvelin
Hardcover
R4,371
Discovery Miles 43 710
|