![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
This book is aimed at students making the transition from a first course on general relativity to a specialized subfield. It presents a variety of topics under the general headings of gravitational waves in vacuo and in a cosmological setting, equations of motion, and black holes, all having a clear physical relevance and a strong emphasis on space-time geometry. Each chapter could be used as a basis for an early postgraduate project for those who are exploring avenues into research in general relativity and who have already accumulated the required technical knowledge. The presentation of each chapter is research monograph style, rather than text book style, in order to impress on interested students the need to present their research in a clear and concise format. Students with advanced preparation in general relativity theory might find a treasure trove here.
General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail are the following; the initial data problem, hyperbolic reductions of the field equations, guage conditions, the evolution of black hole space-times, relativistic hydrodynamics, gravitational wave extraction and numerical methods. There is also a final chapter with examples of some simple numerical space-times. The book is aimed at both graduate students and researchers in physics and astrophysics, and at those interested in relativistic astrophysics.
The study of planet formation has been revolutionized by recent observational breakthroughs, which have allowed the detection and characterization of extrasolar planets, the imaging of protoplanetary disks, and the discovery of the Solar System's Kuiper Belt. Written for beginning graduate students, this textbook provides a basic understanding of the astrophysical processes that shape the formation of planetary systems. It begins by describing the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, terrestrial and gas giant planets, and concludes by surveying new theoretical ideas for the early evolution of planetary systems. Covering all phases of planet formation - from protoplanetary disks to the dynamical evolution of planetary systems - this introduction can be understood by readers with backgrounds in planetary science, and observational and theoretical astronomy. It highlights the physical principles underlying planet formation and the areas where more research and new observations are needed.
The last years have seen a symbiosis of the fields of elementary
particle physics and the astrophysics of the early universe. This
text presents the background of the subjects and the latest
developments at a level suitable for final year undergraduates and
beginning graduate students. The first chapters cover the
properties and interactions of elementary particles followed by
discussion of the early universe, including inflation, dark matter
and dark energy, and the growth of the galactic structure. The
final chapters discuss cosmic rays and particle physics in the
stars. The close relation between particle interactions and large
scale development of the cosmos is a constant theme in the text,
with emphasis on the interplay between experiment and theory.
This book focuses on the characteristics of optical radiation, or a spectrum, emitted by various plasmas. In plasma, the same atomic species can produce quite different spectra, or colors depending on the nature of the plasma. This book gives a theoretical framework, by which a particular spectrum can be interpreted correctly and coherently. The uniqueness of the book lies in its comprehensive treatment of the intensity distribution of spectral lines and the population density distribution among the atomic levels, in plasma. It is intended to provide beginners with a good perspective of the field, laying out the physics in an extremely clear manner, starting from an elementary level. A very useful feature of the book is the asterisked sections and chapters which can be skipped by readers, who only wish to gain a quick and basic introduction to plasma spectroscopy. It will also be very useful to researchers working actively in the field, acting as a guide for carrying out experiments and interpreting experimental observations.
Advances in Quantum Monte Carlo confronts the challenges in quantum mechanics that have become progressively more prevalent in the last five years. This book will cover the needed advances in Quantum Monte Carlo methods including improvements and a complete range of applications. Advances in Quantum Monte Carlo will also include a complete spectrum of applications.
A total eclipse of the Sun is the most awesome sight in the
heavens. Totality takes you to eclipses of the past, present, and
future, and lets you see--and feel--why people travel to the ends
of the Earth to observe them.
The pioneer astronauts who took America into space tell their
personal stories about the challenges they faced -- their fears,
joys, friendships, and successes. Chosen from hundreds of crackerjack pilots for their fitness, intelligence, and courage, the original Mercury Seven astronauts risked their lives to cross the space frontier. In "We Seven, " they take readers behind the scenes to show them their training, technology, and teamwork, and to share personal stories, including the lighter moments of their mission. They bring readers inside the Mercury program -- even into the space capsules themselves. "We Seven" straps you in with the astronauts and rockets you along for the ride. Share Alan Shepard's exhilaration as he breaks through the earth's atmosphere. Endure moments of panic with Gus Grissom when his hatch blows, stranding him in the open sea. Race with John Glenn as he makes split-second life-or-death maneuvers during reentry, and feel his relief when he emerges safe but drenched with sweat. Despite such heroism, Project Mercury was more than the story of individual missions. It defined the manned space flight program to come, from Gemini through Apollo. In "We Seven, " America's original astronauts tell us firsthand -- as only they can -- about the space program they pioneered, and share with us the hopes and dreams of the U.S. at the dawn of a new era.
Bringing his cosmic perspective to civilization on Earth, Neil deGrasse Tyson, bestselling author of Astrophysics for People in a Hurry, shines new light on the crucial fault lines of our time–war, politics, religion, truth, beauty, gender, race, and tribalism–in a way that stimulates a deeper sense of unity for us all. In a time when our political and cultural perspectives feel more divisive than ever, Tyson provides a much-needed antidote to so much of what divides us, while making a passionate case for the twin engines of enlightenment–a cosmic perspective and the rationality of science. After thinking deeply about how a scientist views the world and about what Earth looks like from space, Tyson has found that terrestrial thoughts change as our brain resets and recalibrates life's priorities, along with the actions we might take in response. As a result, no outlook on culture, society, or civilisation remains untouched. In Starry Messenger, Tyson reveals just how human the enterprise of science is. Far from a cold, unfeeling undertaking, scientific methods, tools, and discoveries have shaped modern civilisation and created the landscape we've built for ourselves on which to live, work, and play. Tyson shows how an infusion of science and rational thinking renders worldviews deeper and more informed than ever before–and exposes unfounded perspectives and unjustified emotions. With crystalline prose and an abundance of evidence, Starry Messenger walks us through the scientific palette that sees and paints the world differently. From lessons on resolving global conflict to reminders of how precious it is to be alive, Tyson reveals, with warmth and eloquence, ten surprising, brilliant, and beautiful truths of human society, informed and enlightened by knowledge of our place in the universe.
From a star astrophysicist, a journey into the world of particle physics and the cosmos -- and a call for more just, inclusive practice of science. Science, like most fields, is set up for men to succeed, and is rife with racism, sexism, and shortsightedness as a result. But as Dr. Chanda Prescod-Weinstein makes brilliantly clear, we all have a right to know the night sky. One of the leading physicists of her generation, she is also one of the fewer than one hundred Black women to earn a PhD in physics. You will enjoy -- and share -- her love for physics, from the Standard Model of Particle Physics and what lies beyond it, to the physics of melanin in skin, to the latest theories of dark matter -- all with a new spin and rhythm informed by pop culture, hip hop, politics, and Star Trek. This vision of the cosmos is vibrant, inclusive and buoyantly non-traditional. By welcoming the insights of those who have been left out for too long, we expand our understanding of the universe and our place in it. The Disordered Cosmos is a vision for a world without prejudice that allows everyone to view the wonders of the universe through the same starry eyes.
Recent discoveries in astronomy and relativistic astrophysics as well as experiments on particle and nuclear physics have blurred the traditional boundaries of physics. It is believed that at the birth of the Universe, a whirlwind of matter and antimatter, of quarks and exotic leptons, briefly appeared and merged into a sea of energy. The new phenomena and new states of matter in the Universe revealed the deep connection between quarks and the Cosmos. Motivated by these themes, this book discusses different topics: gravitational waves, dark matter, dark energy, exotic contents of compact stars, high-energy and gamma-ray astrophysics, heavy ion collisions and the formation of the quark-gluon plasma in the early Universe. The book presents some of the latest researches on these fascinating themes and is useful for experts and students in the field.
There are reasons to believe the 21st century will be the best ever for astrophysics: the James Webb Space Telescope will extend nearly twenty times the present observational limit of visible light; neutrino massiveness opens a new window for exploration on dark energy and dark matter physics and is expected to provide insights into the fate of the Universe; the Higgs boson may allow for an understanding of the weakness of gravity; gravitational waves produced at the birth of the Universe and by compact stellar objects (supermassive black holes, black hole/neutron star mergers, gamma-ray bursts, white dwarf inspirals) have unveiled a new area of astronomy. Against this background, compact stars, the theme of this volume, present unique astrophysical laboratories for probing the fabric of space-time and the building blocks of matter and their interactions at physical regimes not attainable in terrestrial laboratories.
All galaxies host a super-massive black hole in their center. These black holes grow their mass in symbiosis with their host galaxy and moderate their star formation. When matter is driven towards the nucleus, an accretion disk is formed to transfer angular momentum and considerable energy is released when the material falls into the black hole: this is the phenomenon of active galactic nuclei (AGN). A nucleus can shine one thousand times more brightly than the entire galaxy with its 200 billion stars. The nuclear activity can take many forms, from very powerful quasars to more ordinary Seyfert galaxies, passing by radio-galaxies, which eject a collimated plasma at ten times the radius of the galaxy.This book examines all of these manifestations and presents a unified view. When two galaxies merge, a binary black hole is formed and the two black holes will spiral inwards and merge, emitting long gravitational waves, which could be detected by the future LISA satellite.
Informed by astronomy education research, the Sixth Edition reflects an emphasis on learning by doing. This emphasis is reinforced through thoughtful pedagogy and an innovative teaching and learning package. Students get to interact with astronomy while instructors receive the resources they need to incorporate active learning into the classroom.
All matter, including galaxy clusters, galaxies, and their constituents follow orbits and flows driven by the net attraction of near and distant masses. The book presents the development of studies of peculiar motions along with discoveries in large-scale structure, the cosmic microwave background, baryonic oscillations, gravity waves, and their relation to current work on gravitation and dark matter.The results of peculiar motion measurements in the late 20th century are described as they were used to search for the dipole of the galaxy motions, a determination of cosmic density, and to compare with the cosmic microwave dipole, which led to the discovery of galactic flows and the Great Attractor. Newer detailed measurements from surveys in the 21st century have helped resolve the nature of these structures. Some prospects for future investigations are discussed.
Leonhard Euler's Letters to a German Princess: A Milestone in the History of Physics Textbooks and More is a milestone in the history of physics textbooks and the instruction of women in the sciences. It also covers views of its author on epistemology, religion, and innovations in scientific equipment, including telescopes and microscopes. Today, 250 years later, we study this work of Euler's as a foundation for the history of physics teaching and analyze the letters from an historical and pedagogical point of view.
In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.
Bringing his cosmic perspective to civilization on Earth, Neil deGrasse Tyson, bestselling author of Astrophysics for People in a Hurry, shines new light on the crucial fault lines of our time-war, politics, religion, truth, beauty, gender, race, and tribalism-in a way that stimulates a deeper sense of unity for us all. In a time when our political and cultural perspectives feel more divisive than ever, Tyson provides a much-needed antidote to so much of what divides us, while making a passionate case for the twin engines of enlightenment-a cosmic perspective and the rationality of science. After thinking deeply about how a scientist views the world and about what Earth looks like from space, Tyson has found that terrestrial thoughts change as our brain resets and recalibrates life's priorities, along with the actions we might take in response. As a result, no outlook on culture, society, or civilisation remains untouched. In Starry Messenger, Tyson reveals just how human the enterprise of science is. Far from a cold, unfeeling undertaking, scientific methods, tools, and discoveries have shaped modern civilisation and created the landscape we've built for ourselves on which to live, work, and play. Tyson shows how an infusion of science and rational thinking renders worldviews deeper and more informed than ever before-and exposes unfounded perspectives and unjustified emotions. With crystalline prose and an abundance of evidence, Starry Messenger walks us through the scientific palette that sees and paints the world differently. From lessons on resolving global conflict to reminders of how precious it is to be alive, Tyson reveals, with warmth and eloquence, ten surprising, brilliant, and beautiful truths of human society, informed and enlightened by knowledge of our place in the universe.
|
![]() ![]() You may like...
On the Principle of Holographic Scaling…
Leo Rodriguez, Shanshan Rodriguez
Hardcover
R1,854
Discovery Miles 18 540
Dialogues Concerning Two New Sciences…
Galileo Galilei, Alfonso De Salvio, …
Hardcover
R819
Discovery Miles 8 190
Searching for Habitable Worlds - An…
Abel Mendez, Wilson Gonzalez-Espada
Hardcover
R3,070
Discovery Miles 30 700
A Brief History of Black Holes - And why…
Dr. Becky Smethurst
Hardcover
|