Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
These Lecture Notes focus on the physics of relativistic jet sources in the universe, from galactic microquasars to active galactic nuclei (AGN). The early 21st century is an epoch in which a large number of high-energy astronomical missions are underway (RossiXTE, Chandra, XMM-Newton, INTEGRAL, Swift, Suzaku). The wealth of X-ray and gamma-ray data, coupled with ground-based observations in the optical/IR/radio bands, provides an increasing amount of information on microquasars, allowing the investigation of the physical processes for the formation and the evolution of relativistic jets, as well as their relation to the accretion process. The information obtained from galactic relativistic jet systems is particularly important in that it can be compared with that from active galactic nuclei. The comparative study of these two classes of objects allows us to overcome their separate intrinsic limitations and is the only way to arrive at a comprehensive understanding of the accretion/ejection phenomenon. This book covers the topic of accretion/ejection in relativistic jet sources with a broad approach, from microquasars to AGN, discussing both observational and theoretical aspects. The aim is to present a broad view of the field and the current standpoint now that the first comparative studies have opened the way to a global study at a mass scale. Written in a pedagogical lecture notes style, the book benefits students and newcomers to jet astrophysics as well as lecturers and researchers.
The Solar-B satellite was launched in the morning of 23 September 2006 (06:36 Japan time) by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), and was renamed to Hinode ('sunrise' in Japanese). Hinode carries three - struments; the X-ray telescope (XRT), the EUV imaging spectrometer (EIS), and the solar optical telescope (SOT). These instruments were developed by ISAS/JAXA in cooperation with the National Astronomical Observatory of Japan as domestic partner, and NASA and the Science and Technology Facilities Council (UK) as international partners. ESA and N- wegian Space Center have been providing a downlink station. All the data taken with Hinode are open to everyone since May 2007. This volume combines the ?rst set of instrumental papers of the Hinode mission (the mission overview, EIS, XRT, and the database system) published in volume 243, Number 1 (June 2007), and the second set of papers (four papers on SOT and one paper on XRT) published in Volume 249, Number 2 (June 2008). Another SOT paper cited as Tarbell et al. (2008) in these papers will appear later in Solar Physics.
Space experiments have opened practically all electromagnetic
windows on the Universe. A discussion of the most important results
obtained with multi-frequency photonic astrophysics experiments
will provide new input to advance our knowledge of physics, very
often in its more extreme conditions.
Provides a comprehensive summary on the physical models and current theory of black hole accretion, growth and mergers, in both the supermassive and stellar-mass cases. This title reviews in-depth research on accretion on all scales, from galactic binaries to intermediate mass and supermassive black holes. Possible future directions of accretion are also discussed. The following main themes are covered: a historical perspective; physical models of accretion onto black holes of all masses; black hole fundamental parameters; and accretion, jets and outflows. An overview and outlook on the topic is also presented. This volume summarizes the status of the study of astrophysical black hole research and is aimed at astrophysicists and graduate students working in this field. Originally published in Space Science Reviews, Vol 183/1-4, 2014.
For a quantitative understanding of the physics of the universe - from the solar system through the milky way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be wary of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena in astrophysical research. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize. The second edition includes numerous updates throughout the book and, in addition, it contains a list of alternative explanations to astrophysical findings that can be seen as a serious testing ground for young scientists.
The 10th ESLAB Symposium was held at Grossenzersdorf near Vienna on 10-13 June 1975 under the title 'The Scientific Satellite Programme During the Inter national Magnetospheric Study'. The Symposium was attended by an invited audience of 60 scientists from the ESA Member States, the United States, Japan, Canada and Austria. Following a report by the joint COSPAR-IUCSTP Special Working Group, the International Magnetospheric Study (lMS) is proposed as an international co operative enterprise of limited duration, having as its principal objective the achie vement of a comprehensive, quantitative understanding of the dynamical processes operating in the Earth's plasma and field environment. In order to accomplish this objective, it is thought to be necessary to carry out simultaneous measurements with nearly identical instrumentation at various points in space. These measurements will need to be made in combination with appropriate observations at or near the Earth's surface. Besides near-Earth observations by ground-based, rocket- and balloon-borne instrumentation, satellite investigations are expected to make an important contri bution to the IMS. A number of satellites assigned to magnetospheric research have recently been launched, or will be launched shortly, to be operational during the IMS. The European Space Agency has devoted two of its forthcoming scientific satellites - GEOS and ISEE-B - to magnetospheric and interplanetary research.
All theoretical and observational topics relevant to the understanding of the thermonuclear (Type Ia) supernova phenomenon are thoroughly and consistently reviewed by a panel including the foremost experts in the field. The book covers all aspects, ranging from the observations of SNe Ia at all stages and all wavelengths to the 2D and 3D modelling of thermonuclear flames in very dense plasmas. Scenarios for close binary evolution leading to SNe Ia are discussed. Particular emphasis is placed on the homogeneity vs. diversity of SNe Ia and on their use as standard candles to measure cosmological parameters. The book reflects the recent and very significant progress made in both the modelling of the explosions and in the observational field.
The first comprehensive monograph on this active and productive field of research investigates solar-type activity amongst the large spectrum of low- and middle-mass main sequence stars, and presents the subject in a systematic and comprehensive fashion.
Turbulence and magnetic fields are ubiquitous in the Universe. Their importance to astronomy cannot be overestimated. The theoretical advancements in magnetohydrodynamic (MHD) turbulence achieved during the past two decades have significantly influenced many fields of astronomy. This book provides predictive theories of the magnetic field generation by turbulence and the dissipation of MHD turbulence. These fundamental non-linear problems were believed to be tractable only numerically. This book provides complete analytical descriptions in quantitative agreement with existing numerics, as well as theoretical predictions in physical regimes still unreachable by simulations, and explanations of various related observations. It also discusses and promotes the astrophysical applications of MHD turbulence theories, including (i) the particle acceleration and radiation in high-energy phenomena, e.g., Gamma-Ray Bursts, supernova remnants, cosmic rays; (ii) interstellar density fluctuations and the effect on observations, e.g., Faraday rotation, scattering measurements of Galactic and extragalactic radio sources; (iii) density and magnetic field structure in molecular clouds toward star formation. In closing, this book demonstrates the key role of MHD turbulence in connecting diverse astrophysical processes and unraveling long-standing astrophysical problems, as foreseen by Chandrasekhar, a founder of modern astrophysics.
"Stellar Physics" is a an outstanding book in the growing body
of literature on star formation and evolution. Not only does the
author, a leading expert in the field, very thoroughly present the
current state of knowledge on stellar physics, but he handles with
equal care the many problems that this field of research still
faces. A bibliography with well over 1000 entries makes this book
an unparalleled reference source. This second edition is carefully updated in the areas of pre-supernova models, magnetorotational supernovae, and the theory of accretion disks around black holes. Additional sections have been added on strange quark stars, jet formation and collimation, radiation-driven winds in strong gravitational fields and gamma-ray bursts.
The "Unified Mind Theory" falls into 2 parts: the physical and the spiritual Aspect of Creation. The term "Creation" assumes the existence of a Creator, which means if God exists, Creation must be perfect & complete, because God is not subject to time. However, should it be unfinished in some people's mind, then Creation cannot be perfect and complete. We confirm "God does not change His Mind," nor is He subject to any dimension of His own Creation. The physical aspect is that part in us which is strictly mechanical. It is void of life, and it is based on math. This gives us a structure of affirmations on which our present science rests. It describes our 4-dimensional world. However it does not include Life. This is described in the spiritual aspects of Creation which is based on faith and belief in the Creator. It is the description of our 5-dimensional world in perfection and completion.
Minor bodies in the Solar System, though representing only a small fraction of the mass in the Solar System, may well play a fundamental role in terrestrial evolution. This book contains investigations of the dynamics and physics of comets, asteroids and meteor streams, and the rather controversial topic of periodic phenomena in the Solar System as signified by geological records, together with several associated developments in celestial dynamics. All these problems are interwoven. This book makes a contribution towards unravelling the nature of the interactions between the Earth and its celestial environment.
This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed "Full Likelihood", that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.
This thesis presents studies of the starless core populations of three nearby molecular clouds made as part of the James Clerk Maxwell Telescope Gould Belt Survey. These studies combine observations made using the SCUBA-2 submillimetre camera with data from several other instruments, including the Herschel Space Observatory, to identify and characterise starless cores in the Ophiuchus, Taurus and Cepheus molecular clouds. The temperatures, masses and stability against collapse of the starless cores are measured, the latter through detailed virial analysis, including a determination of the external pressure on the cores. The book illustrates core stability on the "virial plane", in which core stability is plotted against core confinement mode, showing that starless cores are typically confined by external pressure rather than self-gravity. It also presents an analytical model of the evolution of starless cores in the "virial plane", demonstrating that a pressure-confined starless core may evolve due to virial stability rather than gravitational collapse, which means that a core can only be definitively considered to be prestellar if it is gravitationally bound.
Comets are always very impressive phenomena. Their appearances at regular, but mostly irregular, times excite people who see them. Astronomers have the obvious advantage of being able to see more of comets, and to study them. Their enthusiasm is reflected in the 50 papers in this book, written by more than 90 experts. The reviews in this book clearly describe a landmark in the history of cometary studies. Knowledge gathered up to and including Comet Halley are presented in two volumes. The first volume is about general aspects of observing and studying comets, where they originate and how their evolution develops. The second volume goes into the details of what a comet is: the nucleus, the coma, cometary dust, plasmas and magnetic fields. The book ends with a reflection by Fred Whipple about Comets in the Post-Halley Era. The book discusses all aspects of comets and is therefore suitable for use in graduate level courses. All astronomers and geophysicists interested in comets will find very useful and well-presented information in this book.
This book deals with an effect in celestial mechanics that has become quite important in exoplanet research. The Lidov-Kozai effect reveals itself in coherent periodic variations (which can be very large) of the inclination and eccentricity of an orbiting body in the presence of an inclined perturber. The effect is known to be important in the motion of many asteroids and planetary satellites. What is more, now it attracts more and more interest in the astronomical and astrophysical community due to its relevance for many exoplanetary systems. Recent years witnessed major advancements in its theory. It would be no exaggeration to say that nowadays the Lidov-Kozai effect becomes one of the most studied astrophysical effects. This book covers the multitude of the Lidov-Kozai effect's modern applications and its theory developments. It will be useful for researchers and students working in astrophysics, celestial mechanics, stellar dynamics, theoretical mechanics, space missions design, depending on the interests of the reader. The book is self-contained. It provides the full detailed coverage of the effect's theory and applications.
Strangeness nuclear physics bears a broad impact on contemporary physics. This set of extensive lectures presents a balanced theoretical and experimental introduction to, and survey of, the field. It addresses topics such as the production and spectroscopy of strange nuclear systems, modern approaches to the hyperon-nucleon interaction, and weak decays of hypernuclei. This burgeoning research field is well served by this tutorial primer.
"Fundamental Astronomy and Solar System Dynamics," a program of invited papers honoring Professor Walter Fricke, who for thirty years has been Director of the Astronomisches Rechen lnstitut in Heidelberg, was held at the Thompson Conference Center of the University of Texas at Austin on Wednesday 27 March 1985 on the occasion of his seventieth birthday and retirement as Director of ARl. Professor Fricke's contributions to astronomy encompass the areas of galactic dynamics, radial velocities, stellar statistics. the fundamental reference system and the constant of precession. Participants were welcomed to the Uni versi ty of Texas by Professor J. Parker Lamb, Chairman of the Department of Aerospace Engineering and Engineering Mechanics. The presentations ranged from discussions of astrometric problems concerned with the reference system, the constant of precession, major and minor planet observations, planetary ephemerides and lunar and satellite laser ranging, to a study of disc galaxies in massive halos. The program concluded with a review of Professor Fricke's career. The three sessions were chaired by Victor G. Szebehely, Carol A. Williams and Jay H. Lieske. The participants in this meeting, and in the Division on Dynamical Astronomy meeting that followed, were happy that Professor Fricke was able to attend. His presence at these meetings, as well as his thoughtful comments, were greatly appreciated. We are pleased to acknowledge the support of the Center for Space Research, the Department of Astronomy and the Department of Aerospace Engineering and Engineering Mechanics of the University of Texas at Austin.
B. G. Marsden Harvard-Smithsonian Center for Astrophysics Cambridge, MA 02138, U.S.A. !AU Symposium No. 81, "Dynamics of the Solar System", was held at the Hydrographic Office, Tokyo, Japan, during 23-26 May 1978. The Sym- posium was cosponsored by COSPAR and IUTAM, and generous financial sup- port was also provided by the Japan Society for the Promotion of Science. !AU sponsorship was through Commissions 4, 7 and 20, and the Scientific Organizing Committee consisted of the current Presidents, Vice Presi- dents and immediate Past Presidents of these Commissions: V. K. Abalakin, R. L. Duncombe, Y. Kozai, L. Kresak, B. G. Marsden (Chairman), P. J. Message, A. M. Sinzi, G. Sitarski and V. G. Szebehely. There were 64 participants from 15 countries, and 55 invited and contributed papers were read. The papers covered all branches of re- search on solar-system dynamics, and the eight sessions (chaired by Y. Kozai, V. G. Szebehely, W. Fricke, A. M. Sinzi, G. Sitarski, B. G.
1.1. MISSION BACKGROUND The scientific objective of this magnetospheric physics mission was a detailed in vestigation of the Aurora Borealis, or 'Northern Lights'. The fields experiments (electric and magnetic) were constructed by the University of California at Berke ley (UCB), and Los Angeles (UCLA) respectively. The particles instruments were constructed by UCB and the University of New Hampshire in collaboration with Lockheed Palo Alto Research Laboratory. The instrument data processing unit was provided by UCB. The spacecraft bus, telemetry, and launch services were provided by the NASA Goddard Space Flight Center SMEX office. The science principal investigator is Dr C. W. Carlson of UCB, and the program is managed by the SMEX office. The UCB design philosophy emphasizes the demonstration of design margins set by peer review. As a result, each boom system was extensively tested at a prototype level before the flight units were manufactured. Additionally, the design, assembly and testing of each boom mechanism was conducted by a single engineer solely responsible for its success.
This thesis addresses two of the central processes which underpin the formation of galaxies: the formation of stars and the injection of energy into the interstellar medium from supernovae, called feedback. In her work Claudia Lagos has completely overhauled the treatment of these processes in simulations of galaxy formation. Her thesis makes two major breakthroughs, and represents the first major steps forward in these areas in more than a decade. Her work has enabled, for the first time, predictions to be made which can be compared against new observations which probe the neutral gas content of galaxies, opening up a completely novel way to constrain the models. The treatment of feedback from supernovae, and how this removes material from the interstellar medium, is also likely to have a lasting impact on the field. Claudia Lagos Ph.D. thesis was nominated by the Institute for Computational Cosmology at Durham University as an outstanding Ph.D. thesis 2012.
Proceedings of a Symposium organized by the Summer Advanced Study Institute, held at Queen's University, Kingston, Ontario, August 3-14, 1970
Stellar astrophysics still provides the basic framework for deciphering the imprints left over by the evolving universe on all scales. Advances or shortcomings in the former field have direct consequences in our ability to understand the global properties of the latter. This volume contains the most recent updates on a variety of topics that, though independent by themselves, are inevitably connected on a cosmological scale. These include comprehensive articles by leaders in fields extending from stellar atmospheres through properties of the stellar component in the Milky Way up to the stellar environment in high redshift galaxies. The wide coverage of astrophysical themes makes this volume very valuable for researchers and Ph.D. students in astrophysics.
The SOLAR-A spacecraft was launched by the Institute of Space and Astronautical Science, Japan (ISS) in August 1991, and, following and ISAS tradition, was renamed YOHKOH. This mission is dedicated principally to the study of solar flares, especially of high-energy phenomena observed in the X-ray and gamma-ray ranges. With a co-ordinated set of instruments including hard X-ray and soft X-ray imaging telescopes as well as spectrometers with advanced capabilities, it is expected to reveal new aspects of flares and help better understand their physics, supporting international collaborations with ground-based observatories as well as theoretical investigations. An overview of this mission, including the stallite, its scientific instruments, and its operation is given in this book.
Written by leading exponents in the field, this collection of timely reviews presents observational methods and the latest results of astronomical research as well as their theoretical foundations and interrelations, providing information and scientifically rigorous coverage. |
You may like...
Advances in the Physics of Stars - in…
Nazar R Ikhsanov, Galina L Klimchitskaya, …
Hardcover
R1,479
Discovery Miles 14 790
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
Starry Messenger - Cosmic Perspectives…
Neil De Grasse Tyson
Paperback
Astrophysics In The Xxi Century With…
Cesar Augusto Zen Vasconcellos, Fridolin Weber
Hardcover
R3,233
Discovery Miles 32 330
|