![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
Features * Fully updated with the latest results from the spacecraft Hinode, Stereo, Solar Dynamics Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), and Parker Solar Probe * Presents step-by-step explanations for calculating numerical models of the photosphere, convection zone, and radiative interior with exercises and simulation problems to test learning * Describes the structure of polytropic spheres and the acoustic power in the Sun and the process of thermal conduction in different physical conditions
Dark matter research is one of the most fascinating and active fields among current high-profile scientific endeavours. It holds the key to all major breakthroughs to come in the fields of cosmology and astroparticle physics. The present volume is particularly concerned with the sources and the detection of dark matter and dark energy in the universe and will prove to be an invaluable research tool for all scientists who work in this field.
The author - a leading theoretical cosmologist - expands on his widely acclaimed lecture notes in this self-contained textbook, suitable for the advanced undergraduate or starting graduate level. Presenting the key theoretical foundations of cosmology and describing the observations that have turned the subject into a precision science, the author keeps the student in mind on every page by explaining concepts step-by-step, in an approachable manner. After describing the dynamics of the homogeneous universe, the book traces the evolution of small density fluctuations, which were created quantum-mechanically during inflation and are today observed in the cosmic microwave background and the large-scale structure of the universe. The book is ideally suited as a course companion or for self-study. With all necessary background material covered, students have everything they need to establish an unrivalled understanding of the subject. Complete with many worked examples, figures, and homework problems, this textbook is a definitive resource for advanced students in physics, astronomy and applied mathematics.
The usual book on the theory of spectral line formation begins with an in-depth dis cussion of radiation transfer, including the elegant methods of obtaining analytical solutions for special cases, and of the physics of line broadening. Neither of those features will be found in this book. It is assumed that the reader is already familiar with the essentials of transport theory and of line broadening and is ready to investi gate some of the particular applications of the theory to the flow of line photons through the outer layers of a star, or other tenuous media. The main thrust of this book is toward the compilation and presentation of a vast quantity of computational material available to the author in the form of computer output. The material presented represents a highly filtered sample of the published work in this subject plus an extensive set of previously unpublished results. To present large quantities of computer output in an intelligible and efficient way is a difficult task, for which I have found no really satisfactory solution. Chapters III and IV, in particular, contain almost exclusively this type of presentation. The reader may find these chapters somewhat tedious because of the level of condensation of the material. I have tried to reach a reasonable balance between over condensation and excessive detail, which in the long run may be irrelevant."
This textbook is designed to serve as a link between the basic disciplines of physics and the frontier topics within high energy astrophysics, aiming at a level of difficulty congruent with that of other physics topics studied at undergraduate level. Therefore, this preparatory and introductory text serves as a gateway to a more detailed study of many of the most interesting and complex phenomena being investigated by contemporary astrophysics. Among others, these include: the evolution of stars, supernovae, neutron stars, black holes, solar neutrinos, and - importantly - the exciting new field of gravitational wave astronomy. The book is supplemented by a collection of problems with which students can test their understanding of the material presented.
This volume contains papers presented at the US/European Celestial Mecha nics Workshop organized by the Astronomical Observatory of Adam Mickiewicz University in Poznan, Poland and held in Poznan, from 3 to 7 July 2000. The purpose of the workshop was to identify future research in celestial mech anics and encourage collaboration among scientists from eastem and westem coun tries. There was a full program of invited and contributed presentations on selected subjects and each day ended with a discussion period on a general subject in celestial mechanics. The discussion topics and the leaders were: Resonances and Chaos-A. Morbidelli; Artificial Satellite Orbits-K. T. Alfriend; Near Earth Ob jects - K. Muinonen; Small Solar System Bodies - I. Williams; and Summary - P. K. Seidelmann. The goal of the discussions was to identify what we did not know and how we might further our knowledge. The size of the meeting and the language differences somewhat limited the real discussion, but, due to the excellence of the different discussion leaders, each of these sessions was very interesting and productive. Celestial Mechanics and Astrometry are both small fields within the general subject of Astronomy. There is also an overlap and relationship between these fields and Astrodynamics. The amount of interaction depends on the interest and efforts of individual scientists."
A half century ago, a shocking Washington Post headline claimed that the world began in five cataclysmic minutes rather than having existed for all time; a skeptical scientist dubbed the maverick theory the Big Bang. In this amazingly comprehensible history of the universe, Simon Singh decodes the mystery behind the Big Bang theory, lading us through the development of one of the most extraordinary, important, and awe-inspiring theories in science.
The ultimate proofs that black holes exist have been obtained very recently thanks to the detection of gravitational waves from their coalescence and due to material orbiting at a distance of some gravitational radii imaged by optical interferometry or X-ray reverberation mapping. This book provides three comprehensive and up-to-date reviews covering the gravitational wave breakthrough, our understanding of accretion and feedback in supermassive black holes and the relevance of black holes for the Universe since the Big Bang. Neil J. Cornish presents gravitational wave emission from black hole mergers and the physics of detection. Andrew King reviews the physics of accretion on to supermassive black holes and their feedback on host galaxies. Tiziana Di Matteo addresses our understanding of black hole formation at cosmic dawn, the emergence of the first quasars, black hole merging and structure formation. The topics covered by the 48th Saas-Fee Course provide a broad overview of the importance of black holes in modern astrophysics.
Freja is a joint Swedish and German satellite, launched on October 6, 1992 and orbiting at 600--1750 km, covering the lower part of the auroral acceleration region. It has been designed to provide high-resolution measurements (both temporal and spatial) of auroral plasma characteristics. The high telemetry rate, together with the 15 Mbyte distributed on-board memories allow Freja to resolve meso and micro-scale phenomena in the 100 m range for particles and 1--10 m range for electric and magnetic fields. The UV imager resolves auroral structures of 1 km size at a time resolution of one image every 6 s. The novel plasma instruments are orders of magnitude better than any that have gone before. The Freja Mission is about the scientific objectives, instruments and platform itself. Detailed descriptions are given of the instrumentation and the first data acquired. It is one of the very few books to contain such material in a single volume, relating the instruments' design with their in-flight characteristics. For space engineers and other researchers interested in space science.
The articles in this volume are a document of the Galileo mission to Jupiter. The Mission Overview is the first article; the second is a description of the design of the very complex spacecraft trajectory in relation to the scientific objects. Subsequent articles describe the various investigations planned by the scientific groups. These are divided in three groups: the Probe, the Magnetospheric Experiments, and the Remote Sensing and Radio Investigations.
"Astrophysics Updates" is intended to serve the information needs of professional astronomers and postgraduate students about areas of astronomy, astrophysics and cosmology that are rich and active research spheres. Observational methods and the latest results of astronomical research are presented as well as their theoretical foundations and interrelations. The contributed commissioned articles are written by leading exponents in a format that will appeal to professional astronomers and astrophysicists who are interested in topics outside their own specific areas of research. This collection of timely reviews may also attract the interest of advanced amateur astronomers seeking scientifically rigorous coverage.
This book is aimed at students making the transition from a first course on general relativity to a specialized subfield. It presents a variety of topics under the general headings of gravitational waves in vacuo and in a cosmological setting, equations of motion, and black holes, all having a clear physical relevance and a strong emphasis on space-time geometry. Each chapter could be used as a basis for an early postgraduate project for those who are exploring avenues into research in general relativity and who have already accumulated the required technical knowledge. The presentation of each chapter is research monograph style, rather than text book style, in order to impress on interested students the need to present their research in a clear and concise format. Students with advanced preparation in general relativity theory might find a treasure trove here.
Over the years, many leading European graduate schools in the field of astrophysical and space plasmas have operated within the framework of the research network, "Theory, Observations, and Simulations in Turbulence in Space Plasmas." This text is a set of lectures and tutorial reviews culled from the relevant work of all those schools. It emphasizes applications on solar coronae, solar flares, and the solar wind. In bridging the gap between standard textbook material and state-of-the-art research, this text offers a broad flavor to postgraduate and postdoctoral students just coming to the field. And because of its unique mix, it will also be useful to lecturers looking for advanced teaching material for their seminars and courses.
Proceedings of the Alexander von Humboldt Colloquium on Celestial Mechanics held in Ramsau, Austria, March 13-19, 1988
Describes the branch of astronomy in which processes in the universe are investigated with experimental methods employed in particle-physics experiments. After a historical introduction the basics of elementary particles, Explains particle interactions and the relevant detection techniques, while modern aspects of astroparticle physics are described in a chapter on cosmology. Provides an orientation in the field of astroparticle physics that many beginners might seek and appreciate because the underlying physics fundamentals are presented with little mathematics, and the results are illustrated by many diagrams. Readers have a chance to enter this field of astronomy with a book that closes the gap between expert and popular level.
Right now, you are orbiting a black hole. The Earth goes around the Sun, and the Sun goes around the centre of the Milky Way: a supermassive black hole - the strangest and most misunderstood phenomenon in the galaxy. In A Brief History of Black Holes University of Oxford astrophysicist, Dr Becky Smethurst charts the scientific breakthroughs that have uncovered the weird and wonderful world of black holes, from the collapse of massive stars to the iconic first photographs of a black hole in 2019. A cosmic tale of discovery, you'll learn: why black holes aren't really 'black', that you never ever want to be 'spaghettified', how black holes are more like sofa cushions than hoovers, and why beyond the event horizon, the future is a direction in space rather than in time. Full of wit and learning, this captivating book explains why black holes contain the secrets to the most profound questions about our universe. 'A jaunt through space history . . . with charming wit and many pop-culture references' - BBC Sky At Night Magazine
Based on a Simons Symposium held in 2018, the proceedings in this volume focus on the theoretical, numerical, and observational quest for dark matter in the universe. Present ground-based and satellite searches have so far severely constrained the long-proposed theoretical models for dark matter. Nevertheless, there is continuously growing astrophysical and cosmological evidence for its existence. To address present and future developments in the field, novel ideas, theories, and approaches are called for. The symposium gathered together a new generation of experts pursuing innovative, more complex theories of dark matter than previously considered.This is being done hand in hand with experts in numerical astrophysical simulations and observational techniques-all paramount for deciphering the nature of dark matter. The proceedings volume provides coverage of the most advanced stage of understanding dark matter in various new frameworks. The collection will be useful for graduate students, postdocs, and investigators interested in cutting-edge research on one of the biggest mysteries of our universe.
This book introduces "Astrostatistics" as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter's coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.
Novel instruments for high-precision imaging polarimetry have opened new possibilities, not only for diagnostics of magnetic fields, but also for exploring effects in radiative scattering, atomic physics, spectral line formation and radiative transfer. The observational advances have stimulated various theoretical developments, for instance in vector radiative transfer and techniques for inverting polarized line profiles. The present volume gives a comprehensive and up-to-date account of this rapidly evolving and interdisciplinary field of science. It is based on the oral presentations given at the 2nd International Workshop on Solar Polarization held in Bangalore, India, in October 1998.
In order to outline possible future directions in galaxy research, this book wants to be a short stopover, a moment of self-reflection of the past century of achievements in this area. Since the pioneering years of galaxy research in the early 20th century, the research on galaxies has seen a relentless advance directly connected to the parallel exponential growth of new technologies. Through a series of interviews with distinguished astronomers the editors provide a snapshot of the achievements obtained in understanding galaxies. While many initial questions about their nature have been addressed, many are still open and require new efforts to achieve a solution. The discussions may reveal paradigms worthwhile revisiting. With the help of some of those scientists who have contributed to it, the editors sketch the history of this scientific journey and ask them for inspirations for future directions of galaxy research.
This book discusses analytic and asymptotic methods relevant to radiative transfer in dilute media, such as stellar and planetary atmospheres. Several methods, providing exact expressions for the radiation field in a semi-infinite atmosphere, are described in detail and applied to unpolarized and polarized continuous spectra and spectral lines. Among these methods, the Wiener-Hopf method, introduced in 1931 for a stellar atmospheric problem, is used today in fields such as solid mechanics, diffraction theory, or mathematical finance. Asymptotic analyses are carried out on unpolarized and polarized radiative transfer equations and on a discrete time random walk. Applicable when photons undergo a large number of scatterings, they provide criteria to distinguish between large-scale diffusive and non-diffusive behaviors, typical scales of variation of the radiation field, such as the thermalization length, and specific descriptions for regions close and far from boundaries. Its well organized synthetic view of exact and asymptotic methods of radiative transfer makes this book a valuable resource for both graduate students and professional scientists in astrophysics and beyond.
Deep Space Craft opens the door to interplanetary flight. It looks at this world from the vantage point of real operations on a specific mission, and follows a natural trail from the day-to-day working of this particular spacecraft, through the functioning of all spacecraft to the collaboration of the various disciplines to produce the results for which a spacecraft is designed. These results are of course mostly of a scientific nature, although a small number of interplanetary missions are also flown primarily to test and prove new engineering techniques. The author shows how, in order to make sense of all the scientific data coming back to Earth, the need for experiments and instrumentation arises, and follows the design and construction of the instruments through to their placement and testing on a spacecraft prior to launch. Examples are given of the interaction between an instrument s science team and the mission s flight team to plan and specify observations, gather and analyze data in flight, and finally present the results and discoveries to the scientific community. This highly focused, insider s guide to interplanetary space exploration uses many examples of previous and current endeavors. It will enable the reader to research almost any topic related to spacecraft and to seek the latest scientific findings, the newest emerging technologies, or the current status of a favorite flight. In order to provide easy paths from the general to the specific, the text constantly refers to the Appendices. Within the main text, the intent is general familiarization and categorization of spacecraft and instruments at a high level, to provide a mental framework to place in context and understand any spacecraft and any instrument encountered in the reader s experience. Appendix A gives illustrated descriptions of many interplanetary spacecraft, some earth-orbiters and ground facilities to reinforce the classification framework. Appendix B contains illustrated detailed descriptions of a dozen scientific instruments, including some ground-breaking engineering appliances that have either already been in operation or are poised for flight. Each instrument s range of sensitivity in wavelengths of light, etc, and its physical principle(s) of operation is described. Appendix C has a few annotated illustrations to clarify the nomenclature of regions and structures in the solar system and the planets ring systems, and places the solar system in context with the local interstellar environment."
In the early years of the twentieth century, Victor Hess of Germany flew instruments in balloons and so discovered in 1912 that an extra- errestial radiation of unknown origin is incident on the earth with an almost constant intensity at all times. These penetrating non solar radiations which were called Cosmic Rays by Millikan, USA, opened the new frontier of space physics and many leading scientists were attracted to it. At the end of World War II a number of space vehicles, e.g. stratospheric balloons, rockets and satellites were developed. In 1950 and onwards, these vehicles enabled spectacular advances in space physics and space astrophysics. New horizons were opened in the explorations of cosmic rays, the earth's magnetosphere, the Sun and the heliosphere, the moon and the planets. Using space-borne instruments, exciting discoveries were made of stars, and galaxies in the infra-red, ultra violet, x-ray and gamma-ray wavelengths. In this text book these fascinating new findings are presented in depth and on a level suitable for senior undergraduate and graduate students, research scientists and scientists of other disciplines. Although there are several excellent books and monographs on different aspects, most of these deal with specific areas. In this text book the findings of space physics and astrophysics are presented in an integrated manner with proper introductions to the fundamental aspects, and these are supplemented by relevant ground based observations."
Originally published in 1995, Creation and Evolution in the Early American Scientific Affiliation is the tenth volume in the series, Creationism in Twentieth Century America, reissued in 2021. The volume comprises of original primary sources from the American Science Affiliation, a group formed following an invitation from the president of the Moody Bible Institute in Chicago, in answer to the perceived need for an academic society for American Evangelical Scientists to explicate the relationship between science and faith. The society confronted the debate between creation and evolution head on, leaving a paper trail documenting their thoughts and struggles. This diverse and expansive collection includes 53 selections that appeared during the organisation’s first two decades and focuses on the encounter between science and American evangelicalism in the twentieth century, in particular the debates surrounding the ever-increasing preference for evolutionary theory. The collection will be of especial interest to natural historians, and theologians as well as academics of philosophy, and history. |
![]() ![]() You may like...
Leonhard Euler's Letters to a German…
Ronald S. Calinger, Ekaterina, …
Hardcover
R2,673
Discovery Miles 26 730
Cross-Scale Coupling and Energy Transfer…
Yukitoshi Nishimura, Olga Verkhoglyadova, …
Paperback
R3,454
Discovery Miles 34 540
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,781
Discovery Miles 27 810
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,466
Discovery Miles 34 660
Analyzing the Physics of Radio…
Kim Ho Yeap, Kazuhiro Hirasawa
Hardcover
R6,847
Discovery Miles 68 470
Astrophysics In The Xxi Century With…
Cesar Augusto Zen Vasconcellos, Fridolin Weber
Hardcover
R3,394
Discovery Miles 33 940
|