![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
The first edition of the monumental book Diseases from Space by Sir Fred Hoyle and N Chandra Wickramasinghe appeared some 40 years ago, encapsulating the key principles of Panspermia, and it has been the guiding principle in the new scientific field of Astrobiology.This latest edition, revised and expanded by Chandra Wickamasinghe, continues to describe the consequences of the theory of cometary panspermia that relate to the origins of epidemic disease. Available data on historic and modern plagues are analysed to show that extraterrestrial bacteria and viruses are the cause of ongoing pandemics of diseases.Adherence to an inappropriate and obsolete theory of pandemics could put in jeopardy the economic well-being of the entire world, perhaps even threatening the continued existence of our civilization.
More than two-thirds of stars belong to multiple stellar systems. Binary stars are considered now as one of the best constraints on stellar formation models. Not only do binaries keep memory of their birth conditions but their orbit will also be subjected to changes by tidal effects, wind accretion and encounters in clusters. Certainly the correlation between orbital eccentricity and period is a clue to our understanding of double star history. These proceedings aim to disentangle evidence of stellar formation from later physical evolution. Each article in this 1992 volume is a paper that was read at a meeting organized to honour Dr Roger Griffin of the University of Cambridge for his pioneer work in galactic astronomy, dynamics of clusters and study on binary stars due to his cross-correlation technique to determine stellar radial velocities.
'This is a nicely produced book which should appeal to a wide readership.'The ObservatoryThis book is about the Dark Energy Survey, a cosmological experiment designed to investigate the physical nature of dark energy by measuring its effect on the expansion history of the universe and on the growth of large-scale structure. The survey saw first light in 2012, after a decade of planning, and completed observations in 2019. The collaboration designed and built a 570-megapixel camera and installed it on the four-metre Blanco telescope at the Cerro Tololo Inter-American Observatory in the Chilean Andes. The survey data yielded a three-dimensional map of over 300 million galaxies and a catalogue of thousands of supernovae. Analysis of the early data has confirmed remarkably accurately the model of cold dark matter and a cosmological constant. The survey has also offered new insights into galaxies, supernovae, stellar evolution, solar system objects and the nature of gravitational wave events.A project of this scale required the long-term commitment of hundreds of scientists from institutions all over the world. The chapters in the first three sections of the book were either written by these scientists or based on interviews with them. These chapters explain, for a non-specialist reader, the science analysis involved. They also describe how the project was conceived, and chronicle some of the many and diverse challenges involved in advancing our understanding of the universe. The final section is trans-disciplinary, including inputs from a philosopher, an anthropologist, visual artists and a poet. Scientific collaborations are human endeavours and the book aims to convey a sense of the wider context within which science comes about.This book is addressed to scientists, decision makers, social scientists and engineers, as well as to anyone with an interest in contemporary cosmology and astrophysics.Related Link(s)
Cosmic inflation and dark energy hold the key to the origin and the eventual fate of the Universe. Despite the increasing prominence of these subjects in research and teaching over the past decade or more, no introductory textbook dedicated to these topics has been previously published. Dr. Konstantinos Dimopoulos is a highly regarded expert in the field, and an experienced communicator of the subject to students. In this book, he provides advanced undergraduate and early graduate students with an accessible introduction and equips them with the tools they need to understand the cosmology of cosmic inflation and dark energy. Features: Provides a concise, pedagogical "crash course" in big bang cosmology, focusing on the dynamics and the history of the Universe, with an emphasis on the role of dark energy Chapters contain questions and problems for readers to test their understanding The first book to make cosmic inflation and dark energy accessible to students
This revised edition provides an up-to-date summary of the field of ultra-high energy cosmic rays, dealing with their origin, propagation, and composition,. The authors reflect the enormous strides made since the first edition in the realm of experimental work, in particular the use of vastly improved, more sensitive and precise detectors. The level remains introductory and pedagogical, suitable for students and researchers interested in moving into this exciting field. Throughout the text, the authors focus on giving an introductory overview of the key physics issues, followed by a clear and concise description of experimental approaches and current results. Key Features: Updates the most coherent summary of the field available, with new text that provides the reader with clear historical context. Brand new discussion of contemporary space-based experiments and ideas for extending ground-based detectors. Completely new discussion of radio detection methods. Includes a new chapter on small to intermediate-scale anisotropy. Offers new sections on modern hadronic models and software packages to simulate showers.
Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to galaxy clusters, the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in physics, astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.
The theory of dynamical systems, or mappings, plays an important
role in various disciplines of modern physics, including celestial
mechanics and fluid mechanics. This comprehensive introduction to
the general study of mappings has particular emphasis on their
applications to the dynamics of the solar system. The book forms a
bridge between continuous systems, which are suited to analytical
developments and to discrete systems, which are suitable for
numerical exploration.
Introduction.- Boarding School and University.- Astronomy Around 1875.- Astronomer and Professor.- Almost Half a Million Stars.- Laboratory and Statistical Astronomy.- Star Streams.- In the mean time in Groningen.- Mount Wilson.- Statistics and other matters.- First Attempt: the Kapetyn Universe.- Coda.
This long-awaited "second edition" of the classical textbook on
"Stellar Structure and Evolution" by Kippenhahn and Weigert is a
thoroughly revised version of the original text. Taking into
account modern observational constraints as well as additional
physical effects such as mass loss and diffusion, Achim Weiss and
Rudolf Kippenhahn have succeeded in bringing the book up to the
state-of-the-art with respect to both the presentation of stellar
physics and the presentation and interpretation of current
sophisticated stellar models. The well-received and proven
pedagogical approach of the first edition has been retained.
Long used in undergraduate and introductory graduate courses, Astrophysical Techniques, Seventh Edition provides an accessible yet comprehensive account of the innovate instruments, detectors, and techniques employed in astronomy and astrophysics. Emphasizing the underlying unity of all astronomical observations, this popular textbook provides a coherent state-of-the-art account of the instruments and techniques used in current astronomy and astrophysics. Fully updated throughout, this seventh edition builds upon the sixth edition, covering improved techniques and cutting-edge methods in the field, as well as other exciting new developments in gravitational waves, dark matter and energy, the use of photonics, and astronomy education and outreach, in addition to further detailed discussions on the latest scientific instruments and individual detectors. The book is written in a very accessible manner, and most of the mathematics is accessible to those who have attended a mathematics course in their final years at school. Nevertheless, the treatment of the topics in general is at a sufficiently high level to be of use to those professionals seeking technical information in areas of astronomy with which they might not be completely familiar. Key Features: Details the instrumentation and theory of astronomical observations, including radio waves, gamma rays, cosmic rays, neutrinos, gravitational waves and dark matter and energy and more Presents the background theory and operating practice of state-of-the-art detectors and instruments Fully updated to contain the latest technology and research developments
The classical three-body problem is of great importance for its applications to astronomy and space navigation, and also as a simple model of a non-integrable Hamiltonian dynamical system. A central role is played by periodic orbits, of which a large number have been computed numerically. Here the author explains and organizes this material through a systematic study of generating families, which are the limits of families of periodic orbits when the mass ratio of the two main bodies becomes vanishingly small. The most critical part is the study of bifurcations. Many cases are distinguished and studied separately and detailed recipies are given. Their use is illustrated by determining generating families, and comparing them with numerical computations for the Earth+Moon and Sun-Jupiter systems.
Predicted long ago to be present on the surface of planetary bodies by theoreticians and recently shown by interplanetary spacecraft and ground- based instruments to be ubiquitous in the Solar System, ices in a broad sense have become an extremely important subject in planetary research. Ices found on objects formed in the remote parts of the Solar System contain a message about the composition and mode of formation of our planetary system. There are also objects that contain icy materials that bear signatures of past events on a geological timescale. Their study is one of the best means of inquiring about the origins, accessing the past and anticipating the future of our Solar System. The reviews in this book collect together a series of papers covering the physics and chemistry of ices, as well as the geology of icy surfaces. They present an extensive summary of their chemical and physical properties relevant to planetary astronomy. They also provide an overview of planetary bodies that contain ices and the outstanding problems of the field. Audience: The book is intended to become a reference for researchers and graduate students. It is accessible to senior graduate students with a background in planetary science.
Long used in undergraduate and introductory graduate courses, Astrophysical Techniques, Seventh Edition provides an accessible yet comprehensive account of the innovate instruments, detectors, and techniques employed in astronomy and astrophysics. Emphasizing the underlying unity of all astronomical observations, this popular textbook provides a coherent state-of-the-art account of the instruments and techniques used in current astronomy and astrophysics. Fully updated throughout, this seventh edition builds upon the sixth edition, covering improved techniques and cutting-edge methods in the field, as well as other exciting new developments in gravitational waves, dark matter and energy, the use of photonics, and astronomy education and outreach, in addition to further detailed discussions on the latest scientific instruments and individual detectors. The book is written in a very accessible manner, and most of the mathematics is accessible to those who have attended a mathematics course in their final years at school. Nevertheless, the treatment of the topics in general is at a sufficiently high level to be of use to those professionals seeking technical information in areas of astronomy with which they might not be completely familiar. Key Features: Details the instrumentation and theory of astronomical observations, including radio waves, gamma rays, cosmic rays, neutrinos, gravitational waves and dark matter and energy and more Presents the background theory and operating practice of state-of-the-art detectors and instruments Fully updated to contain the latest technology and research developments
"An Introduction to Waves and Oscillations in the Sun" is intended
for students and researchers who work in the area of solar and
astrophysics. This book contains an introduction to the Sun, basics
of electrodynamics, magneto-hydrodynamics for force-free and
current-free fields. It deals with waves in uniform media with
relevance to sound waves and Alfven waves, and with waves in
non-uniform media like surface waves or waves in a slab and
cylindrical geometry. It also touches on instabilities in fluids
and observational signatures of oscillations. Finally, there is an
introduction to the area of helio-seismology, which deals with the
internal structure of the Sun.
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives. This book is divided into three main parts: Part I provides a pedagogical, but rigorous, general relativity-based discussion of cosmological models, showing the evidence for dark energy, the constraints from primordial nucleosynthesis and the need for inflation Part II introduces density fluctuations and their statistical description, discussing different theoretical scenarios, such as CDM, as well as observations Part III introduces the general relativity approach to structure formation and discusses the physics behind the CMB temperature and polarization pattern of the microwave sky Carefully adapted from the course taught by Prof. Vittorio at the University of Rome Tor Vergata, this book will be an ideal companion for advanced students undertaking a course in cosmology. Features: Incorporates the latest experimental results, at a time of rapid change in this field, with balanced coverage of both theoretical and experimental perspectives Each chapter is accompanied by problems, with detailed solutions The basics of tensor calculus and GR are given in the appendices
Written by an award-winning cosmologist, this brand new textbook provides advanced undergraduate and graduate students with coverage of the very latest developments in the observational science of cosmology. The book is separated into three parts; part I covers particle physics and general relativity, part II explores an account of the known history of the universe, and part III studies inflation. Full treatment of the origin of structure, scalar fields, the cosmic microwave background and the early universe are provided. Problems are included in the book with solutions provided in a separate solutions manual. More advanced extension material is offered in the Appendix, ensuring the book is fully accessible to students with a wide variety of background experience. Features: Incorporates the latest experimental results, at a time of rapid change in the field Explores the origin of structure and the Cosmic Microwave Background Includes an extensive number of problems and a corresponding solutions manual
Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.
Reflecting the results of twenty years; experience in the field of multipurpose flights, this monograph includes the complex routes of the trajectories of a number of bodies (e.g., space vehicles, comets) in the solar system. A general methodological approach to the research of flight schemes and the choice of optimal performances is developed. Additionally, a number of interconnected methods and algorithms used at sequential stages of such development are introduced, which allow the selection of a rational multipurpose route for a space vehicle, the design of multipurpose orbits, the determination of optimal space vehicle design, and ballistic performances for carrying out the routes chosen. Other topics include the practical results obtained from using these methods, navigation problems, near-to-planet orbits, and an overview of proven and new flight schemes.
After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.
When Kai Zuber's pioneering text on neutrinos was published in 2003, the author correctly predicted that the field would see tremendous growth in the immediate future. In that book, Professor Zuber provided a comprehensive self-contained examination of neutrinos, covering their research history and theory, as well as their application to particle physics, astrophysics, nuclear physics, and the broad reach of cosmology; but now to be truly comprehensive and accurate, the field's seminal reference needs to be revised and expanded to include the latest research, conclusions, and implications. Revised as needed to be equal to the research of today, Neutrino Physics, Third Edition delves into neutrino cross-sections, mass measurements, double beta decay, solar neutrinos, neutrinos from supernovae, and high-energy neutrinos, as well as entirely new experimental results in the context of theoretical models. Written to be accessible to graduate students and readers from diverse backgrounds, this edition, like the first, provides both an introduction to the field as well as the information needed by those looking to make their own contributions to it. And like the second edition, it whets the researcher's appetite, going beyond certainty to pose those questions that still need answers. Features Presents the only single-author comprehensive text on neutrino physics Includes experimental and theoretical particle physics and examines solar neutrinos and astroparticle implications Offers details on new developments and recent experiments
Continuing to take readers on a uniquely accessible journey through physics, Superstrings and Other Things: A Guide to Physics, Third Edition, explains the basic concepts of motion, energy, and gravity, right up to the latest theories about the structure of matter, the origin and structure of the universe, and the beginning of time. Fully updated throughout, this book explores major historical discoveries and the scientists behind them. In addition, this comprehensive text details the breathtaking frontiers of physics being explored today. Offering nonscience students access to the highest peaks of physics, Dr. Calle translates concepts so they can be appreciated by those with willing curiosity and imagination. Features Provides up-to-date coverage of modern physics, Offers nonscience students and laymen access to the highest peaks of physics, Showcases modern applications of physics in our everyday world.
Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences, within the context of general classical physics. The book is working gradually from an introductory to an advanced level. Addressing central issues in modern plasma sciences, including linear and nonlinear wave phenomena, this second edition has been fully updated and includes the latest developments in relevant fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping, linear as well as non-linear. The book is the result of many years of lecturing plasma sciences in Norway, Denmark, Germany, and also at the Unites States of America. Offering a clear separation of linear and nonlinear models, the book can be tailored for students of varying levels of expertise in plasma physics, in addition to areas as diverse as the space sciences, laboratory experiments, plasma processing, and more. Features: Presents a simple physical interpretation of basic problems is presented where possible Supplies a complete summary of classical papers and textbooks placed in the proper context Includes worked examples, exercises, and problems with general applicability
In recent years, an unprecedented interest in novel and
revolutionary space missions has risen out of the advanced NASA and
ESA programs. Astrophysicists, astronomers, space systems
engineers, mathematicians and scientists have been cooperating to
implement novel and ground-breaking space missions. Recent progress
in mathematical dynamics has enabled development of specialised
spacecraft orbits and propulsion systems. Recently, the concept of
flying spacecraft in formation has gained a lot of interest within
the community. These progresses constitute the background to a
significant renaissance of research dealing with astrodynamics and
its applications.
It is well known that stellar winds are variable, and the fluctuations are often cyclical in nature. This property seems to be shared by the winds of cool and hot stars, even though their outflows are driven by fundamentally different physical mechanisms. Since very similar models have been proposed to explain the cyclical wind variations observed in a wide variety of stars, the time was ripe for astrophysicists from many different sub-disciplines to present the state of the art in a concise form. The proceedings will provide a useful, up-to-date overview of the observations, interpretation, and modelling of the time-dependent mass outflows from all sorts of stars.
In 2008, the European FP6 JETSET project ended. JETSET, for Jet, Simulations, Experiments, and Theory, was a joint research network of European expert teams on protostellar jets. The present proceedings are a collection of contributions presenting new results obtained by those groups since the end of the JETSET program. This is also the occasion to celebrate Kanaris Tsinganos' important contributions to this network and for his enlightening insight in the subject that inspired us all. Some of the former JETSET students are now in the academic world and the subject has never been so alive. So we present here a collection of results of what has been done in the field of protostellar jets in the past ten years from the theoretical, numerical, observational and experimental point of view. We also present new challenges in the field of protostellar jets and what we should expect from the development of new instruments and new numerical codes in the near future. We also gather results on the impact of the study of protostellar jets on other jet studies in particular on relativistic jets. As a matter of fact, it is time for a new network. |
You may like...
Functional Ingredients from Algae for…
Herminia Dominguez, Leonel Pereira, …
Paperback
R5,799
Discovery Miles 57 990
Extrusion Problems Solved - Food, Pet…
M.N. Riaz, G.J. Rokey
Hardcover
R4,023
Discovery Miles 40 230
Dietary Lipids: Nutritional and…
CrÃspulo Gallegos-Montes, Victoria Ruiz Méndez
Hardcover
R3,923
Discovery Miles 39 230
Satiation, Satiety and the Control of…
John E Blundell, France Bellisle
Hardcover
R4,393
Discovery Miles 43 930
Food Sustainability and the Media…
Marta Antonelli, Pierangelo Isernia
Paperback
R2,936
Discovery Miles 29 360
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R38,876
Discovery Miles 388 760
|