![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
The essence of temporal universe creation is that any analytical solution has to comply with the boundary condition of our universe; dimensionality and causality constraints. The essence of this book is to show that everything has a price within our temporal (t > 0) universe; energy and time. In mathematics, every postulation needs proof; there exists a solution before searching for the solution. Yet science does not have seem to have a criterion as mathematics does; to prove first that a postulated science exists within our temporal universe. Without such a criterion, fictitious science emerges, as already have been happening in every day's event. In this book, the author has shown there exists a criterion for a postulated science whether or not it is existed within our universe. The author started this book from Einstein's relativity to the creation of our temporal universe. He has shown that every subspace within our universe is created by energy and time, in which subspace and time are coexisted. The important aspect is that every science has to satisfy the boundary condition of our universe; causality and dimensionality. Following up with temporal universe, the author has shown a profound relationship with the second law of thermodynamics. He examines the relationship between entropy with science as well as communication with quantum limited subspace throughout the book. The author discusses the paradox of Schroedinger's Cat (which has been debated by Einstein, Bohr, Schroedinger and many others since 1935) that triggered his discovering that Schroedinger's quantum mechanics is a timeless machine, in which he has disproved the fundamental principle of superposition within our universe. Since quantum mechanics is a virtual mathematics, he has shown that a temporal quantum machine can, in principle, be built on the top of a temporal platform. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, engineers, professors and students as a reference and research-oriented book.
Streamlining the extensive information from the original, highly acclaimed monograph, this new An Introduction to the Physics of Interstellar Dust provides a concise reference and overview of interstellar dust and the interstellar medium. Drawn from a graduate course taught by the author, a highly regarded figure in the field, this all-in-one book emphasizes astronomical formulae and astronomical problems to give a solid foundation for the further study of interstellar medium. Covering all phenomena associated with cosmic dust, this inclusive text eliminates the need to consult special physical literature by providing a comprehensive introduction in one source. The book addresses the absorption and scattering of dust, its creation in old stars, as well as emission, cohesion, and electrical charge. With strong attention to detail, the author facilitates a complete understanding from which to build a more versatile application and manipulation of the information. Providing insightful explanations for the utilization of many formulae, the author instructs in the effective investigation of astronomical objects for determining basic parameters. The book offers numerous figures displaying basic properties of dust such as optical constants, specific heat, and absorption and scattering coefficients making it accessible for the reader to apply these numbers to the problem at hand. There is an extensive section and comprehensive introduction to radiative transfer in a dusty medium with many practical pieces of advice and ample illustrations to guide astronomers wishing to implement radiative transfer code themselves. An unparalleled amount of astronomical information in an accessible and palatable resource, An Introduction to the Physics of Interstellar Dust provides the most complete foundational reference available on the subject.
The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation throughout and additional material on equations of state, heat waves, and ionization fronts, as well as problem sets accompanied by solutions.
This special issue of Space Science Reviews contains selected papers on electromagnetic man-made and natural environmental interactions. Originally these papers were pre sented at the Fifth International Wrocfaw Symposium on Electromagnetic Compatibility. Wroclaw (Poland), 17-19 September, 1980, a biennial gathering of scientists and engineers. At that time, the symposium organizers selected a few persons of recognized authority and invited them to organize special sessions. Session organizers were given a free hand in the choice of topics and speakers. As a result, several impressive papers originated and a number of interesting people came to Wroclaw to discuss the recent results of their research. Professor Hiroshi Kikuchi from the Nihon University (J apan) was among them, serving as one of the most effective invited session chairmen/organizers at the symposium. The papers presented here were read at Prof. Kikuchi's session. At the symposium they received considerable attention not only because of the fascinating personalities and temperaments of the authors, but mainly because of the timeliness and soundness of their content. Their topic links both scientific and engineering fields in making attempts to resolve these kinds of specific hybrid problems. The problems discussed appear to be of interest not only to the EMC* community but also to a broader forum of persons interested in the areas of electrical and space science, and engineering in general. This opinion was confirmed during the URSI** symposium in Washington, D. C."
Nonlinear dynamo theory is central to understanding the magnetic structures of planets, stars and galaxies. In chapters contributed by some of the leading scientists in the field, this text explores some of the recent advances in the field. Both kinetic and dynamic approaches to the subject are considered, including fast dynamos, topological methods in dynamo theory, physics of the solar cycle and the fundamentals of mean field dynamo. Advances in Nonlinear Dynamos is ideal for graduate students and researchers in theoretical astrophysics and applied mathematics, particularly those interested in cosmic magnetism and related topics, such as turbulence, convection, and more general nonlinear physics.
So you've fallen in love with space and now you want to see it for yourself, huh? You want to witness the birth of a star, or visit the black hole at the center of our galaxy? You want to know if there are aliens out there, or how to travel through a wormhole? You want the wonders of the universe revealed before your very eyes? Well stop, because all that will probably kill you. From mundane comets in our solar backyard to exotic remnants of the Big Bang, from dying stars to young galaxies, the universe may be beautiful, but it's treacherous. Through metaphors and straightforward language, it breathes life into astrophysics, unveiling how particles and forces and fields interplay to create the drama in the heavens above us.
Marvel at the wonders of the Universe, from stars and planets to black holes and nebulae, in this exploration of our Solar System and beyond. Universe opens with a look at astronomy and the history of the Universe, using 3D artworks to provide a comprehensive grounding in the fundamental concepts of astronomy, including the basic techniques of practical astronomy. The core of the book is a tour of the cosmos covering the Solar System, the Milky Way, and galaxies beyond our own. Explanatory pages introduce different celestial phenomena, such as galaxies, and are followed by catalogues that profile the most interesting and important examples. A comprehensive star atlas completes the picture, with entries on each of the 88 constellations and a monthly sky guide showing the night sky as it appears throughout the year as viewed from both the northern and southern hemispheres.
This book highlights selected topics of standard and modern theory of accretion onto black holes and magnetized neutron stars. The structure of stationary standard discs and non-stationary viscous processes in accretion discs are discussed to the highest degree of accuracy analytic theory can provide, including relativistic effects in flat and warped discs around black holes. A special chapter is dedicated to a new theory of subsonic settling accretion onto a rotating magnetized neutron star. The book also describes supercritical accretion in quasars and its manifestation in lensing events. Several chapters cover the underlying physics of viscosity in astrophysical discs with some important aspects of turbulent viscosity generation. The book is aimed at specialists as well as graduate students interested in the field of theoretical astrophysics.
From superstring theory to models with extra dimensions to dark matter and dark energy, a range of theoretically stimulating ideas have evolved for physics beyond the standard model. These developments have spawned a new area of physics that centers on the interplay between particle physics and cosmology-astroparticle physics. Providing the necessary theoretical background, Particle and Astroparticle Physics clearly presents the many recent advances that have occurred in these fields. Divided into five parts, the book begins with discussions on group and field theories. The second part summarizes the standard model of particle physics and includes some extensions to the model, such as neutrino masses and CP violation. The next section focuses on grand unified theories and supersymmetry. The book then discusses the general theory of relativity, higher dimensional theories of gravity, and superstring theory. It also introduces various novel ideas and models with extra dimensions and low-scale gravity. The last part of the book deals with astroparticle physics. After an introduction to cosmology, it covers several specialized topics, including baryogenesis, dark matter, dark energy, and brane cosmology. With numerous equations and detailed references, this lucid book explores the new physics beyond the standard model, showing that particle and astroparticle physics will together reveal unique insights in the next era of physics.
These Transactions provide a record of the organisational and administrative activities of the IAU XXIX General Assembly which took place in Honolulu, Hawai'i, USA, in August 2015. They report and record all of the essential decisions taken by the governing body of the IAU. These include the approval of the financial accounts and of the proposed budget for the next three years, the admission of new national and individual members, the evaluation of Division and Commission reports, and the approval of Resolutions. This General Assembly also completed the internal restructuring that began in 2012, with the approval of thirty-five new Commissions, together with their elected Presidents and Organising Committees. A further change to the scientific programme of the XXIX General Assembly was the substitution of the Joint Discussions meetings and Special Sessions with a single entity, designated as Focus Meetings and published in the new 'Astronomy in Focus' series.
A thorough introduction to modern ideas on cosmology and on the
physical basis of the general theory of relativity, An Introduction
to the Science of Cosmology explores various theories and ideas in
big bang cosmology, providing insight into current problems.
Assuming no previous knowledge of astronomy or cosmology, this book
takes you beyond introductory texts to the point where you are able
to read and appreciate the scientific literature, which is broadly
referenced in the book. The authors present the standard big bang
theory of the universe and provide an introduction to current
inflationary cosmology, emphasizing the underlying physics without
excessive technical detail.
Gravitational waves (GWs) are a hot topic and promise to play a
central role in astrophysics, cosmology, and theoretical physics.
Technological developments have led us to the brink of their direct
observation, which could become a reality in the coming years. The
direct observation of GWs will open an entirely new field: GW
astronomy. This is expected to bring a revolution in our knowledge
of the universe by allowing the observation of previously unseen
phenomena, such as the coalescence of compact objects (neutron
stars and black holes), the fall of stars into supermassive black
holes, stellar core collapses, big-bang relics, and the new and
unexpected.
Edwin Hubble: Mariner of the Nebulae is both the biography of an extraordinary human being and the story of the greatest quest in the history of astronomy since the Copernican revolution. The book is a revealing portrait of scientific genius, an incisive engaging history of ideas, and a shimmering evocation of what we see when gazing at the stars. Born in 1889 and reared in the village of Marshfield, Missouri, Edwin Powell Hubble-star athlete, Rhodes Scholar, military officer, and astronomer- became one of the towering figures in twentieth-century science. Hubble worked with the great 100-inch Hooker telescope at California's Mount Wilson Observatory and made a series of discoveries that revolutionized humanity's vision of the cosmos. In 1923 he was able to confirm the existence of other nebulae (now known to be galaxies) beyond our own Milky Way. By the end of the decade, Hubble had proven that the universe is expanding, thus laying the very cornerstone of the big bang theory of creation. It was Hubble who developed the elegant scheme by which the galaxies are classified as ellipticals and spirals, and it was Hubble who first provided reliable evidence that the universe is homogeneous, the same in all directions as far as the telescope can see. An incurable Anglophile with a penchant for tweed jackets and English briars, Hubble, together with his brilliant and witty wife, Grace Burke, became a fixture in Hollywood society in the 1930s and 40s. They counted among their friends Charlie Chaplin, the Marx brothers, Anita Loos, Aldous and Maria Huxley, Walt Disney, Helen Hayes, and William Randolph Hearst. Albert Einstein, a frequent visitor to Southern California, called Hubble's work "beautiful" and modified his equations on relativity to account for the discovery that the cosmos is expanding.
The announcement in 2012 that the Higgs boson had been discovered was understood as a watershed moment for the Standard Model of particle physics. It was deemed a triumphant event in the reductionist quest that had begun centuries ago with the ancient Greek natural philosophers. Physicists basked in the satisfaction of explaining to the world that the ultimate cause of mass in our universe had been unveiled at CERN, Switzerland. The Standard Model of particle physics is now understood by many to have arrived at a satisfactory description of entities and interactions on the smallest physical scales: elementary quarks, leptons, and intermediary gauge bosons residing within a four-dimensional spacetime continuum. Throughout the historical journey of reductionist physics, mathematics has played an increasingly dominant role. Indeed, abstract mathematics has now become indispensable in guiding our discovery of the physical world. Elementary particles are endowed with abstract existence in accordance with their appearance in complicated equations. Heisenberg's uncertainty principle, originally intended to estimate practical measurement uncertainties, now bequeaths a numerical fuzziness to the structure of reality. Particle physicists have borrowed effective mathematical tools originally invented and employed by condensed matter physicists to approximate the complex structures and dynamics of solids and liquids and bestowed on them the authority to define basic physical reality. The discovery of the Higgs boson was a result of these kinds of strategies, used by particle physicists to take the latest steps on the reductionist quest. This book offers a constructive critique of the modern orthodoxy into which all aspiring young physicists are now trained, that the ever-evolving mathematical models of modern physics are leading us toward a truer understanding of the real physical world. The authors propose that among modern physicists, physical realism has been largely replaced-in actual practice-by quasirealism, a problematic philosophical approach that interprets the statements of abstract, effective mathematical models as providing direct information about reality. History may judge that physics in the twentieth century, despite its seeming successes, involved a profound deviation from the historical reductionist voyage to fathom the mysteries of the physical universe.
As demonstrated by five Nobel Prizes in physics, radio astronomy has contributed greatly to our understanding of the Universe. Yet for too long, there has been no comprehensive textbook on radio astronomy for undergraduate students. This two-volume set of introductory textbooks is exclusively devoted to radio astronomy, with extensive discussions of telescopes, observation methods, and astrophysical processes that are relevant for this exciting field. The first volume, Fundamentals of Radio Astronomy: Observational Methods, discusses radio astronomy instrumentation and the techniques to conduct successful observations. The second volume, Fundamentals of Radio Astronomy: Astrophysics, discusses the physical processes that give rise to radio emission, presents examples of astronomical objects that emit by these mechanisms, and illustrates how the relevant physical parameters of astronomical sources can be obtained from the radio observations. Requiring no prior knowledge of astronomy, the two volumes are ideal textbooks for radio astronomy courses at the undergraduate or graduate level, particularly those that emphasize radio wavelength instrumentation and observational techniques or the astrophysics of radio sources. The set enables instructors to pick and choose topics from the two volumes that best fit their courses. Features: Explores radio astronomy instruments and techniques that are important to enable observations Describes astrophysical processes that produce the radio emissions observed in different types of astronomical objects Includes numerous worked examples to demonstrate how the methods are used to solve problems, in addition to advanced material for students with more extensive physics and mathematics backgrounds
Geophysical and Astrophysical Convection collects important papers from an international group of the world's foremost researchers in geophysical and astrophysical convection to present a concise overview of recent thinking in the field. Topics include: Atmospheric convection, solar and stellar convection, unsteady non-penetrative thermal convection, astrophysical convection and dynamos, dynamics of cumulus entertainment, turbulent convection: helical buoyant convection, transport phenomena, potential vorticity, rotating convective turbulence, and the modeling and simulation various types of convection and turbulence.
The origin of the solar system has been a matter of speculation for
many centuries, and since the time of Newton it has been possible
to apply scientific principles to the problem. A succession of
theories, starting with that of Pierre Laplace in 1796, has gained
general acceptance, only to fall from favor due to its
contradiction in some basic scientific principle or new heavenly
observation. Modern observations by spacecraft of the solar system,
the stars, and extra-solar planetary systems continuously provide
new information that may be helpful in finding a plausible theory
as well as present new constraints for any such theory to satisfy.
This is volume 4 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research, covering subjects of key interest to the main fields of contemporary astronomy. This volume on Stellar Structure and Evolution edited by Martin A. Barstow presents accessible review chapters on Stellar Structure, Stellar Atmospheres, The Sun as a Star, Asteroseismology, Star Formation, Young Stellar Objects and Protostellar Disks, Brown Dwarfs, Evolution of Solar and Intermediate- Mass Stars, The Evolution of High Mass Stars, Stellar Activity, White Dwarf Stars, Black Holes and Neutron Stars, Binaries and Multiple Stellar Systems, Supernovae and Gamma-Ray Bursts, and Stellar Winds. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology.
Reflecting the results of twenty years; experience in the field of
multipurpose flights, this monograph includes the complex routes of
the trajectories of a number of bodies (e.g., space vehicles,
comets) in the solar system.
Research of the interstellar medium (ISM) has been advancing
rapidly during the last 10 years, mainly due to immensely improved
observational facilities and techniques in all wavelength ranges.
We are now able to investigate the ISM in external galaxies and
even the intergalactic and intracluster medium in great detail.
Increased spatial and spectral resolution have provided us with a
great deal of information on the interstellar gas in its various
phases, the magnetic field and the cosmic rays, and of course, also
the stellar component, which is the driving agent of the
interstellar matter cycle.
This concise textbook, designed specifically for a one-semester course in astrophysics, introduces astrophysical concepts to undergraduate science and engineering students with a background in college-level, calculus-based physics. The text is organized into five parts covering: stellar properties; stellar structure and evolution; the interstellar medium and star/planet formation; the Milky Way and other galaxies; and cosmology. Structured around short easily digestible chapters, instructors have flexibility to adjust their course's emphasis as it suits them. Exposition drawn from the author's decade of teaching his course guides students toward a basic but quantitative understanding, with 'quick questions' to spur practice in basic computations, together with more challenging multi-part exercises at the end of each chapter. Advanced concepts like the quantum nature of energy and radiation are developed as needed. The text's approach and level bridge the wide gap between introductory astronomy texts for non-science majors and advanced undergraduate texts for astrophysics majors.
A thorough introduction to modern ideas on cosmology and on the physical basis of the general theory of relativity, An Introduction to the Science of Cosmology explores various theories and ideas in big bang cosmology, providing insight into current problems. Assuming no previous knowledge of astronomy or cosmology, this book takes you beyond introductory texts to the point where you are able to read and appreciate the scientific literature, which is broadly referenced in the book. The authors present the standard big bang theory of the universe and provide an introduction to current inflationary cosmology, emphasizing the underlying physics without excessive technical detail. The book treats cosmological models without reliance on prior knowledge of general relativity, the necessary physics being introduced in the text as required. It also covers recent observational evidence pointing to an accelerating expansion of the universe. The first several chapters provide an introduction to the topics discussed later in the book. The next few chapters introduce relativistic cosmology and the classic observational tests. One chapter gives the main results of the hot big bang theory. Next, the book presents the inflationary model and discusses the problem of the origin of structure and the correspondingly more detailed tests of relativistic models. Finally, the book considers some general issues raised by expansion and isotropy. A reference section completes the work by listing essential formulae, symbols, and physical constants. Beyond the level of many elementary books on cosmology, An Introduction to the Science of Cosmology encompasses numerous recent developments and ideas in the area. It provides more detailed coverage than many other titles available, and the inclusion of problems at the end of each chapter aids in self study and makes the book suitable for taught courses.
This book builds on the fluid and kinetic theory of equilibria and waves presented in a companion textbook, Basic Space Plasma Physics (by the same authors), but can also serve as a stand-alone text. It extends the field covered there into the domain of plasma instability and nonlinear theory. The book provides a representative selection of the many possible macro- and microinstabilities in a space plasma, from the Rayleigh-Taylor and Kelvin-Helmholtz to electrostatic and electromagnetic kinetic instabilities. Their quasilinear stabilization and nonlinear evolution and their application to space physics problems are treated. The chapters on nonlinear theory include nonlinear waves, weak turbulence and strong turbulence, all presented from the viewpoint of their relevance to space plasma physics. Special topics include auroral particle acceleration, soliton formation and caviton collapse, anomalous transport, and the theory of collisionless shocks.
To understand the history, accomplishments, failures, and meanings of astronomy requires a knowledge of what has been said about astronomy by philosophers, novelists, playwrights, poets, scientists, and laymen. With this in mind, Astronomically Speaking: A Dictionary of Quotations on Astronomy and Physics serves as a guide to what has been said about astronomy through the ages. Containing approximately 1,550 quotations and numerous illustrations, this resource is the largest compilation of astronomy and astrophysics quotations published to date. Devoted to astronomy and the closely related areas of mathematics and physics, this resource helps form an accurate picture of these interconnected disciplines. It is designed as an aid for general readers with little knowledge of astronomy who are interested in astronomical topics. Students can use the book to increase their understanding of the complexity and richness that exists in scientific disciplines. In addition, experienced scientists will find it as a handy source of quotes for use in the classroom, in papers, and in presentations. A quick glance through the table of contents illustrates the variety of topics discussed. Readers can quickly and easily access the wit and wisdom of several hundred scientists, writers, philosophers, poets, and academics using the comprehensive indexes. |
You may like...
New Phenomena And New States Of Matter…
Cesar Augusto Zen Vasconcellos, Peter Otto Hess, …
Hardcover
R3,076
Discovery Miles 30 760
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
Advances in the Physics of Stars - in…
Nazar R Ikhsanov, Galina L Klimchitskaya, …
Hardcover
Astrophysics, Astronomy and Space…
Luisa Bonolis, Juan-Andres Leon
Hardcover
R4,412
Discovery Miles 44 120
|