![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neutrino emission during the gravitational collapse.
A thorough introduction to modern ideas on cosmology and on the physical basis of the general theory of relativity, An Introduction to the Science of Cosmology explores various theories and ideas in big bang cosmology, providing insight into current problems. Assuming no previous knowledge of astronomy or cosmology, this book takes you beyond introductory texts to the point where you are able to read and appreciate the scientific literature, which is broadly referenced in the book. The authors present the standard big bang theory of the universe and provide an introduction to current inflationary cosmology, emphasizing the underlying physics without excessive technical detail. The book treats cosmological models without reliance on prior knowledge of general relativity, the necessary physics being introduced in the text as required. It also covers recent observational evidence pointing to an accelerating expansion of the universe. The first several chapters provide an introduction to the topics discussed later in the book. The next few chapters introduce relativistic cosmology and the classic observational tests. One chapter gives the main results of the hot big bang theory. Next, the book presents the inflationary model and discusses the problem of the origin of structure and the correspondingly more detailed tests of relativistic models. Finally, the book considers some general issues raised by expansion and isotropy. A reference section completes the work by listing essential formulae, symbols, and physical constants. Beyond the level of many elementary books on cosmology, An Introduction to the Science of Cosmology encompasses numerous recent developments and ideas in the area. It provides more detailed coverage than many other titles available, and the inclusion of problems at the end of each chapter aids in self study and makes the book suitable for taught courses.
Despite remarkable advances in astronomy, space research, and related technology since the first edition of this book was published, the philosophy of the prior editions has remained the same throughout. However, because of this progress, there is a need to update the information and present the new findings. In the fourth edition of Astronomy: Principles and Practice, much like the previous editions, the celebrated authors give a comprehensive and systematic treatment to the theories of astronomy. This reference furthers your study of astronomy by presenting the basic software and hardware, providing several straightforward mathematical tools, and discussing some simple physical processes that are either involved in the astronomer's tools of trade or concerned in the mechanisms associated with astronomical bodies. The first six chapters introduce the simple observations that can be made by the eye as well as discuss how such observations were interpreted by previous civilizations. The next several chapters examine the interpretation of positional measurements and the basic principles of celestial mechanics. The authors then explore radiation, optical telescopes, and radio and high-energy technologies. They conclude with practical projects and exercises. New to the Fourth Edition: Revised values such as the obliquity of the ecliptic Expanded material that is devoted to new astronomies and techniques such as optical data recording A listing of Web sites that offer information on relevant astronomical events Revised and expanded, this edition continues to offer vital information about the fundamentals of astronomy. Astronomy: Principles and Practice, Fourth Edition satisfies the need of anyone who has a strong desire to understand the philosophy and applications of the science of astronomy.
Bringing the material up to date, Black Holes, Wormholes and Time Machines, Second Edition captures the new ideas and discoveries made in physics since the publication of the best-selling first edition. While retaining the popular format and style of its predecessor, this edition explores the latest developments in high-energy astroparticle physics and Big Bang cosmology. The book continues to make the ideas and theories of modern physics easily understood by anyone, from researchers to students to general science enthusiasts. Taking you on a journey through space and time, author Jim Al-Khalili covers some of the most fascinating topics in physics today, including: Black holes Space warps The Big Bang Time travel Wormholes Parallel universes Professor Al-Khalili explains often complex scientific concepts in simple, nontechnical terms and imparts an appreciation of the cosmos, helping you see how time traveling may not be so far-fetched after all.
The discipline of nonlinear dynamics has developed explosively in all areas of physics. This comprehensive primer summarizes the main developments in the mathematical theory of dynamical systems, chaos, pattern formation and complexity. An introduction to mathematical concepts and techniques is given in the first part of the book, before being applied to stellar, interstellar, galactic and large scale complex phenomena in the Universe. Regev demonstrates the possible application of ideas including strange attractors, Poincare sections, fractals, bifurcations, and complex spatial patterns, to specific astrophysical problems. This self-contained text will appeal to a broad audience of astrophysicists and astronomers who wish to understand and apply modern dynamical approaches to the problems they are working on. It provides researchers and graduate students with the investigative tools they need to fully explore chaotic and complex phenomena.
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives. This book is divided into three main parts: Part I provides a pedagogical, but rigorous, general relativity-based discussion of cosmological models, showing the evidence for dark energy, the constraints from primordial nucleosynthesis and the need for inflation Part II introduces density fluctuations and their statistical description, discussing different theoretical scenarios, such as CDM, as well as observations Part III introduces the general relativity approach to structure formation and discusses the physics behind the CMB temperature and polarization pattern of the microwave sky Carefully adapted from the course taught by Prof. Vittorio at the University of Rome Tor Vergata, this book will be an ideal companion for advanced students undertaking a course in cosmology. Features: Incorporates the latest experimental results, at a time of rapid change in this field, with balanced coverage of both theoretical and experimental perspectives Each chapter is accompanied by problems, with detailed solutions The basics of tensor calculus and GR are given in the appendices
A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners.
A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners.
The Star and the Whole: Gian-Carlo Rota on Mathematics and Phenomenology, authored by Fabrizio Palombi, is the first book to study Rota's philosophical reflection. Rota (1932 1999) was a leading figure in contemporary mathematics and an outstanding philosopher, inspired by phenomenology, who made fundamental contributions to combinatorial analysis, and trained several generations of mathematicians in his long career at the Massachusetts Institute of Technology (MIT) and the Los Alamos National Laboratory. The first chapter of the book reconstructs Rota's cultural biography and examines his philosophical style, his criticisms of analytical philosophy, and his reflection on Heidegger's thought. The second chapter presents a general picture of Rota's re-elaboration of phenomenology examined in the light of the Husserlian notion of Fundierung. This chapter also illustrates how the star-shape becomes a powerful instrument for understanding the properties of Husserl's mereology and the critique of objectivism. The third chapter is a theoretical reflection on the nature of mathematical entities, and the fourth examines the complex relation of mathematical research with technological applicability and scientific progress. The foreword of the text is written by Robert Sokolowski.
Since the publication of the popular first edition, stellar and planetary scientists have produced numerous new observations, theories, and interpretations, including the "demotion" of our former ninth planet Pluto as a dwarf planet. Covering all of these new discoveries, Planetary Science: The Science of Planets around Stars, Second Edition explains the science associated with the planets, the stars they orbit, and the interactions between them. It examines the formation, evolution, and death of stars and the properties of the Sun that influence the planets of the Solar System. Along with more problems, this second edition adds new material and improves some analytical treatments. The book consists of two main components. For students unfamiliar with stellar properties or the overall structure of the Solar System, the first part gives a general picture of the system as a whole and the interrelationships of the bodies within it. It presents an overview of the nature of stars and the Solar System as well as important results obtained by scientific analysis. The second component is a set of 43 appendices describing the majority of the underlying science required to explain the main features of the Solar System. These appendices cover a variety of specialized topics, from mineralogy to the mechanical interactions of radiation and matter. End-of-chapter problems give students a quantitative understanding of stellar and solar system phenomena. The text shows how useful estimates of various quantities can be made even when characteristics of the system are not known with any precision. While the problems can be completed with a hand calculator, students are encouraged to use the Fortran computer programs provided on the book's CRC Press web page. Avoiding excessive details, this textbook offers a comprehensive account of stellar and planetary topics. It is suitable for students from a
Long established as one of the premier references in the fields of astronomy, planetary science, and physics, the fourth edition of Orbital Motion continues to offer comprehensive coverage of the analytical methods of classical celestial mechanics while introducing the recent numerical experiments on the orbital evolution of gravitating masses and the astrodynamics of artificial satellites and interplanetary probes. Following detailed reviews of earlier editions by distinguished lecturers in the USA and Europe, the author has carefully revised and updated this edition. Each chapter provides a thorough introduction to prepare you for more complex concepts, reflecting a consistent perspective and cohesive organization that is used throughout the book. A noted expert in the field, the author not only discusses fundamental concepts, but also offers analyses of more complex topics, such as modern galactic studies and dynamical parallaxes. New to the Fourth Edition: Numerous updates and reorganization of all chapters to encompass new methods New results from recent work in areas such as satellite dynamics New chapter on the Caledonian symmetrical n-body problem Extending its coverage to meet a growing need for this subject in satellite and aerospace engineering, Orbital Motion, Fourth Edition remains a top reference for postgraduate and advanced undergraduate students, professionals such as engineers, and serious amateur astronomers.
Every hundred years or so, a unique groundbreaking Copernican class volume arises unexpectedly. From ashes long thought cold of Einstein's static universe model, for the first time technically viable alternative interpretations to all pillars of Big Bang cosmology are presented in the context of a profound new 'continuous-state' cosmological paradigm able to elucidate many contemporary problems plaguing the standard model of particle physics. The cosmology provides an alternative derivation of the string/brane tension formalism derived from large-scale additional dimensions that leads to a putative unique background-independent string vacuum without requiring the Higgs mechanism or SUSY superpartners. Breakthroughs presented, arising from the broad spectrum of explanatory power, include an empirical protocol for violation of the quantum uncertainty principle that provides a viable model for the implementation of universal bulk quantum computing. Other developments naturally arising from utility of the new regime include a design for constructing de Broglie-type matter-wave projectile defense shields with far-reaching consequences.
New Cosmic Horizons tells the extraordinary story of space-based astronomy since the Second World War. Starting with the launch of the V2 rocket in 1946, this book explores the triumphs of space experiments and spacecraft designs and the amazing astronomical results that they have produced. David Leverington examines the fascinating way in which the changing political imperatives of the United States, USSR/Russia and Western Europe have modified their space astronomy programs. He covers all major astronomy missions of the first fifty years of space research: the Soviet Sputnik and American Explorer projects, the subsequent race to the moon, solar and planetary missions, and the wonders of modern astrophysics culminating in the exciting results of the Hubble Space Telescope. Extensively illustrated, New Cosmic Horizons offers amateur and professional astronomers an unusual perspective on the history of astronomy in our time. David Leverington was Design Manager of the GEOS Spacecraft and Meteosat Program Manager for ESA in the 1970s. During his tenure as Engineering Director at British Aerospace in the 1980s, he was responsible for the Giotto spacecraft that intercepted Halley's comet, and the Photon Detector Assembly and solar arrays for the Hubble Space Telescope. He is a Fellow of the Royal Astronomical Society. He lives in Essex, England.
In part one of Effective Action in Quantum Gravity, the book describes the principles of quantum field theory and the significance of and theory behind effective action. Part two deals with quantum field theory in curved space-time and the effective action. These two parts provide the tools for understanding the rest of the book, which is devoted to selected problems of quantum gravity where the effective action plays a major role. The book assumes only a basic understanding of quantum field theory and general relativity and will be of interest to postgraduate students and researchers in theoretical high-energy physics and gravitational theory.
In recent years knowledge of nova phenomena has grown significantly due to the advent of new observational facilities, both on the ground and in space, and considerable advances in theoretical work. This second edition has been fully updated and revised and contains new contributions covering important developments in this field, and reflecting on interesting new insights into classical novae. The book examines thermonuclear processes, the evolution of nova systems, nova atmospheres and winds, the evolution of dust and molecules in novae, nova remnants, and observations of novae in other galaxies. It includes observations across the electromagnetic spectrum, from radio to gamma rays, and discusses some of the most important outstanding problems in classical nova research. This is the only book devoted solely to the study of classical novae, and as such is an important reference for researchers actively engaged in the subject and graduate students seeking an introduction.
Essential Relativistic Celestial Mechanics presents a systematic exposition of the essential questions of relativistic celestial mechanics and their relation to relativistic astrometry. The book focuses on the comparison of calculated and measurable quantities that is of paramount importance in using general relativity as a necessary framework in the discussion of high-precision observations and for the construction of accurate dynamical ephemerides. It discusses the results of the general relativistic theory of motion of celestial bodies and describes the relativistic theory of astronomical reference frames, time scales, and the reduction of observations.
This book provides insight into concept of the weak interaction and its integration into the conceptual structure of elementary particle physics. It exhibits the important role of the weak interaction in nuclear, particle and astrophysics together with the close connection between these areas.
The last decade has witnessed a breathtaking expansion of ideas concerning the origin and evolution of the universe. Researchers in cosmology thus need an unprecedented wide background in diverse areas of physics. Bridging the gap that has developed, Physics of the Early Universe explains the foundations of this subject. This postgraduate-/research-level volume covers cosmology, gauge theories, the standard model, cosmic strings, and supersymmetry.
This book is intended as a supplementary text to the standard course books on theoretical physics and astrophysics, addressing applications and selected problems in theoretical physics and astrophysics, most of which are to a greater or lesser extent associated with electrodynamics.
A series of engaging essays that explore iconic moments of discovery and debate in physicists' ongoing quest to understand the quantum world. The ideas at the root of quantum theory remain stubbornly, famously bizarre: a solid world reduced to puffs of probability; particles that tunnel through walls; cats suspended in zombielike states, neither alive nor dead; and twinned particles that share entangled fates. For more than a century, physicists have grappled with these conceptual uncertainties while enmeshed in the larger uncertainties of the social and political worlds around them, a time pocked by the rise of fascism, cataclysmic world wars, and a new nuclear age. In Quantum Legacies, David Kaiser introduces readers to iconic episodes in physicists' still-unfolding quest to understand space, time, and matter at their most fundamental. In a series of vibrant essays, Kaiser takes us inside moments of discovery and debate among the great minds of the era--Albert Einstein, Erwin Schrödinger, Stephen Hawking, and many more who have indelibly shaped our understanding of nature--as they have tried to make sense of a messy world. Ranging across space and time, the episodes span the heady 1920s, the dark days of the 1930s, the turbulence of the Cold War, and the peculiar political realities that followed. In those eras as in our own, researchers' ambition has often been to transcend the vagaries of here and now, to contribute lasting insights into how the world works that might reach beyond a given researcher's limited view. In Quantum Legacies, Kaiser unveils the difficult and unsteady work required to forge some shared understanding between individuals and across generations, and in doing so, he illuminates the deep ties between scientific exploration and the human condition.
This book introduces quantum field theory, together with its most important applications to cosmology and astroparticle physics, in a coherent framework. The path integral approach is employed right from the start, and the use of Green functions and generating functionals is illustrated first in quantum mechanics and then in scalar field theory. Massless spin one and two fields are discussed on an equal footing, and gravity is presented as a gauge theory in close analogy with the Yang-Mills case. Concepts relevant to modern research such as helicity methods, effective theories, decoupling, or the stability of the electroweak vacuum are introduced. Various applications such as topological defects, dark matter, baryogenesis, processes in external gravitational fields, inflation and black holes help students to bridge the gap between undergraduate courses and the research literature.
This book explores the extraordinary difficulties a nation-state's law enforcement and military face in attempting to prevent cyber-attacks. In the wake of recent assaults including the denial of service attack on Estonia in 2007 and the widespread use of the Zeus Trojan Horse software, Susan W. Brenner explores how traditional categories and procedures inherent in law enforcement and military agencies can obstruct efforts to respond to cyberthreats. Brenner argues that the use of a territorially-based system of sovereignty to combat cyberthreats is ineffective, as cyberspace erodes the import of territory. This problem is compounded by the nature of cybercrime as a continually evolving phenomenon driven by rapid and complex technological change. Following an evaluation of the efficacy of the nation-state, the book goes on to explore how individuals and corporations could be integrated into a more decentralized, distributed system of cyberthreat control. Looking at initiatives in Estonia and Sweden which have attempted to incorporate civilians into their cyber-response efforts, Brenner suggests that civilian involvement may mediate the rigid hierarchies that exist among formal agencies and increase the flexibility of any response. This book will be of great interest to students and researchers of information technological law and security studies.
The first edition of the monumental book Diseases from Space by Sir Fred Hoyle and N Chandra Wickramasinghe appeared some 40 years ago, encapsulating the key principles of Panspermia, and it has been the guiding principle in the new scientific field of Astrobiology.This latest edition, revised and expanded by Chandra Wickamasinghe, continues to describe the consequences of the theory of cometary panspermia that relate to the origins of epidemic disease. Available data on historic and modern plagues are analysed to show that extraterrestrial bacteria and viruses are the cause of ongoing pandemics of diseases.Adherence to an inappropriate and obsolete theory of pandemics could put in jeopardy the economic well-being of the entire world, perhaps even threatening the continued existence of our civilization.
Scientific and popular literature on modern cosmology is very extensive; however, scholarly works on the historical development of cosmology are few and scattered. The Oxford Handbook of the History of Modern Cosmology offers a comprehensive and authoritative account of the history of cosmology from the late nineteenth century to the early twenty-first century. It provides historical background to what we know about the universe today, including not only the successes but also the many false starts. Big Bang theory features prominently, but so does the defunct steady state theory. The book starts with a chapter on the pre-Einstein period (1860-1910) and ends with chapters on modern developments such as inflation, dark energy and multiverse hypotheses. The chapters are organized chronologically, with some focusing on theory and others more on observations and technological advances. A few of the chapters discuss more general ideas, relating to larger contexts such as politics, economy, philosophy and world views. |
![]() ![]() You may like...
BTEC First in Travel & Tourism Student…
Rachael Aston, Nicola Appleyard, …
Paperback
![]() R1,072 Discovery Miles 10 720
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
![]()
The Legend Of Zola Mahobe - And The…
Don Lepati, Nikolaos Kirkinis
Paperback
![]()
Neoliberalism in the Tourism and…
Vipin Nadda, Sahidi Bilan, …
Hardcover
R4,979
Discovery Miles 49 790
|