Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
This present book discusses the application of the methods to astrophysical data from different perspectives. In this book, the reader will encounter interesting chapters that discuss data processing and pulsars, the complexity and information content of our universe, the use of tessellation in astronomy, characterization and classification of astronomical phenomena, identification of extragalactic objects, classification of pulsars and many other interesting chapters. The authors of these chapters are experts in their field and have been carefully selected to create this book so that the authors present to the community a representative publication that shows a unique fusion of artificial intelligence and astrophysics.
This book discusses key theoretical aspects concerning the formation of the solar wind: the most essential building block in the heliosphere, in which planets orbit. To understand the influence of solar activity on planetary magnetospheres and atmospheres, we need to first understand the origin of the solar wind, which is still under debate. This book presents the outcomes of state-of-the-art numerical simulations of solar wind acceleration, including the first three-dimensional simulation of the turbulence-driven solar wind model. One of the book's goals is to include compressional effects in the dynamics of solar wind turbulence; accordingly, it discusses parametric decay instability in detail. Several key aspects that are relevant to the Parker Solar Probe observations are also discussed. Given its scope, the book plays a key role in bridging the gap between the theory of magnetohydrodynamic turbulence and current/future in-situ observations of the solar wind. This book is based on the Ph.D. thesis by the author, which won the 2019 International Astronomical Union Division E Ph.D. prize.
The winner of UCL's annual HEP thesis prize, this work describes an analysis of the data from the second flight of the Antarctica Impulsive Transient Antenna (ANITA). ANITA is a balloon-borne experiment that searches for radio signals originating from ultra-high energy neutrinos and cosmic rays interacting with the Antarctic ice or air. The search for ultrahigh energy neutrinos of astrophysical origin is one of the outstanding experimental challenges of the 21st century. The ANITA experiment was designed to be the most sensitive instrument to ultra-high energy neutrinos that originate from the interactions of cosmic rays with the cosmic microwave background. The methodology and results of the neutrino and cosmic ray searches are presented in the thesis.
The study of AGN is one of the most dynamic areas of contemporary astronomy, involving one-fifth of all research astronomers. This textbook provides a systematic review of the observed properties of AGN across the entire electromagnetic spectrum, examines the underlying physics, and shows how the brightest AGN--quasars--can be used to probe the farthest reaches of the Universe. This timely textbook is a clear, comprehensive and self-contained introduction to active galactic nuclei (AGN)--for advanced undergraduates and graduate students in astronomy and physics.
This thesis by Cole Johnston brings novel insights into the inner workings of young massive stars. By bridging the observational fields of binary stars and asteroseismology this thesis uses state of the art statistical techniques to scrutinise theories of modern stellar astrophysics. Developing upon the commonly used isochrone fitting methodology, the author introduces the idea of isochrone cloud fitting in order to account for the full breadth of physics observed in stars. The author combines this methodology with gravity mode asteroseismic analysis to asses the level of chemical mixing deep within the stellar core in order to determine the star's age and core mass. Wrapped into a robust statistical framework to account for correlations, this methodology is employed to analyse individual stars, multiple systems, and clusters alike to demonstrate that chemical mixing has dramatic impact on stellar structure and evolution.
This is volume 2 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research, covering subjects of key interest to the main fields of contemporary astronomy. This volume on Astronomical Techniques, Software, and Data edited by Howard E. Bond presents accessible review chapters on Astronomical Photometry, Astronomical Spectroscopy, Infrared Astronomy Fundamentals, Astronomical Polarimetry: Polarized Views of Stars and Planets, Sky Surveys, Techniques of Radio Astronomy, Radio and Optical Interferometry: Basic Observing Techniques and Data Analysis, Absolute Calibration of Spectrophotometric Standard Stars, Virtual Observatories, Data Mining, and Astroinformatics, Statistical Methods for Astronomy, Numerical Techniques in Astrophysics . All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology.
This book is a collection of original papers presented at the International Conference on Computational Mathematics in Nanoelectronics and Astrophysics (CMNA 2018) held at the Indian Institute of Technology Indore, India, from 1 to 3 November 2018. It aims at presenting recent developments of computational mathematics in nanoelectronics, astrophysics and related areas of space sciences and engineering. These proceedings discuss the most advanced innovations, trends and real-world challenges encountered and their solutions with the application of computational mathematics in nanoelectronics, astrophysics and space sciences. From focusing on nano-enhanced smart technological developments to the research contributions of premier institutes in India and abroad on ISRO's future space explorations-this book includes topics from highly interdisciplinary areas of research. The book is of interest to researchers, students and practising engineers working in diverse areas of science and engineering, ranging from applied and computational mathematics to nanoelectronics, nanofabrications and astrophysics.
Magnetic fields permeate space and affect many major astrophysical phenomena, but they are often ignored due to their perceived complexity. This self-contained introduction to astrophysical magnetic fields provides both a comprehensive review of the current state of the subject and a critical discussion of the latest research. It presents our knowledge of magnetic fields from the Early Universe, their evolution in cosmic time through to their roles in present-day galaxies, galaxy clusters and the wider intergalactic medium, with attention given to both theory and observations. This volume also contains an extensive introduction into magnetohydrodynamics, numerous worked examples, observational and mathematical techniques and interpretations of the observations. Its review of our current knowledge, with an emphasis on results that are likely to form the basis for future progress, benefits a broad audience of advanced students and active researchers, including those from fields such as cosmology and general relativity.
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams.
This book provides an introduction to relativistic dissipative fluid dynamics, with particular emphasis on its derivation from microscopic transport theory. After a phenomenological derivation of relativistic dissipative fluid dynamics from the second law of thermodynamics, the intrinsic instabilities of relativistic Navier-Stokes theory are discussed. In turn, analytical solutions of relativistic dissipative fluid dynamics are presented. Following, the authors discuss several theories and approaches to derive transport coefficients in dissipative fluid dynamics such as the Chapman-Enskog theory, the theory of Israel and Stewart, and a more recent derivation of relativistic dissipative fluid dynamics based on kinetic theory, which constitutes the main focus of the second part of this book. This book is intended for advanced graduate students and researchers in physics and requires basic knowledge of the theory of special and general relativity. It should be of particular interest to researchers that apply relativistic fluid dynamics in cosmology, astrophysics, and high-energy nuclear physics.
The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite was launched on 5 February 2002. Its objective is to study the energy release and particle acceleration in solar flares through observations of X-rays and gamma rays. Two novel technologies are combined to obtain both spectra and images over a broad energy range. For the spectroscopy, cooled hyperpure germanium detectors are used to cover the energy range from 3 keV to 17 MeV with unprecedented keV-class resolution. Since focusing optics are not possible for making images with such high energy photons, tungsten and molybdenum absorbing grids are used to modulate the X-rays and gamma-rays coming from the Sun as the spacecraft rotates. This allows the spatial Fourier components of the source to be determined so that images can be made in spectral ranges where astronomical images have never been produced before. These new instrumental techniques require equally innovative software to reconstruct X-ray and gamma-ray spectra and images from the observations. Ample solar activity, abundant observations, and an open data
policy have attracted many researchers. Astronomers face in the
RHESSI mission an exciting new scientific potential. It has
unusually broad possibilities for improving our understanding of
the enigmatic solar flare phenomenon that is becoming increasingly
important as society depends more and more on space-based
technologies. The accompanying CD-ROM contains X-ray and EUV movies showing the dynamics of several solar flares. It also contains color versions of the graphics in the printed papers and additional material. Scientists and students will find here the latest discoveries in solar flare research, as well as inspiration for future work. The papers will serve as references for the many new discoveries to come from the continuing RHESSI observations.
'This is a nicely produced book which should appeal to a wide readership.'The ObservatoryThis book is about the Dark Energy Survey, a cosmological experiment designed to investigate the physical nature of dark energy by measuring its effect on the expansion history of the universe and on the growth of large-scale structure. The survey saw first light in 2012, after a decade of planning, and completed observations in 2019. The collaboration designed and built a 570-megapixel camera and installed it on the four-metre Blanco telescope at the Cerro Tololo Inter-American Observatory in the Chilean Andes. The survey data yielded a three-dimensional map of over 300 million galaxies and a catalogue of thousands of supernovae. Analysis of the early data has confirmed remarkably accurately the model of cold dark matter and a cosmological constant. The survey has also offered new insights into galaxies, supernovae, stellar evolution, solar system objects and the nature of gravitational wave events.A project of this scale required the long-term commitment of hundreds of scientists from institutions all over the world. The chapters in the first three sections of the book were either written by these scientists or based on interviews with them. These chapters explain, for a non-specialist reader, the science analysis involved. They also describe how the project was conceived, and chronicle some of the many and diverse challenges involved in advancing our understanding of the universe. The final section is trans-disciplinary, including inputs from a philosopher, an anthropologist, visual artists and a poet. Scientific collaborations are human endeavours and the book aims to convey a sense of the wider context within which science comes about.This book is addressed to scientists, decision makers, social scientists and engineers, as well as to anyone with an interest in contemporary cosmology and astrophysics.Related Link(s)
The Compound-Nuclear Reaction and Related Topics (CNR*) international workshop series was initiated in 2007 with a meeting near Yosemite National Park. It has since been held in Bordeaux (2009), Prague (2011), Sao Paulo (2013), Tokyo (2015), and Berkeley, California (2018). The workshop series brings together experts in nuclear theory, experiment, data evaluations, and applications, and fosters interactions among these groups. Topics of interest include: nuclear reaction mechanisms, optical model, direct reactions and the compound nucleus, pre-equilibrium reactions, fusion and fission, cross section measurements (direct and indirect methods), Hauser-Feshbach theory (limits and extensions), compound-nuclear decays, particle and gamma emission, level densities, strength functions, nuclear structure for compound-nuclear reactions, nuclear energy, nuclear astrophysics, and other topics. This peer-reviewed proceedings volume presents papers and poster summaries from the 6th International Workshop on Compound-Nuclear Reactions and Related Topics CNR*18, held on September 24-28, 2018, at Lawrence Berkeley National Lab, Berkeley, CA.
This volume provides a detailed description of some of the most active areas in astrophysics from the largest scales probed by the Planck satellite to massive black holes that lie at the heart of galaxies and up to the much awaited but stunning discovery of thousands of exoplanets. It contains the following chapters: * Jean-Philippe UZAN, The Big-Bang Theory: Construction, Evolution and Status * Jean-Loup PUGET, The Planck Mission and the Cosmic Microwave Background * Reinhard GENZEL, Massive Black Holes: Evidence, Demographics and Cosmic Evolution * Arnaud CASSAN, New Worlds Ahead: The Discovery of Exoplanets Reinhard Genzel and Andrea Ghez shared the 2020 Nobel Prize in Physics "for the discovery of a supermassive compact object at the centre of our galaxy'", alongside Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity". The book corresponds to the twentieth Poincare Seminar, held on November 21, 2015, at Institut Henri Poincare in Paris. Originally written as lectures to a broad scientific audience, these four chapters are of high value and will be of general interest to astrophysicists, physicists, mathematicians and historians.
Black holes present one of the most fascinating predictions of Einstein's general theory of relativity. There is strong evidence of their existence through observation of active galactic nuclei, including the centre of our galaxy, observations of gravitational waves, and others. There exists a large scientific literature on black holes, including many excellent textbooks at various levels. However, most of these steer clear from the mathematical niceties needed to make the theory of black holes a mathematical theory. Those which maintain a high mathematical standard are either focused on specific topics, or skip many details. The objective of this book is to fill this gap and present a detailed, mathematically oriented, extended introduction to the subject. The book provides a wide background to the current research on all mathematical aspects of the geometry of black hole spacetimes.
Stacy Palen knows that introductory astronomy may be the only science course some students take in their college careers, so it's their best chance to develop scientific literacy. Education research shows that the best way to attain scientific literacy is through active learning. Understanding Our Universe, Fourth Edition makes it easier for instructors to help students understand the concepts and learn to value science by providing activities that can be used before, during, and after class. By expanding her pedagogy to include What If scenarios and What an Astronomer Sees figure captions, Stacy helps students build scientific literacy and to think critically about science in the media.
These are the proceedings of a meeting celebrating Michael Thompson's seminal work on solar and stellar physics, as well as his major contributions to the development of the National Center for Atmospheric Research. The meeting also marked Michael J. Thompson's untimely death in October 2018. Michael played a key role in the development of helioseismology and its application to the study of the structure and dynamics of the solar interior, and he provided a strong foundation for the extension of seismic studies for other stars. After focusing for several years on more administrative activities, he was returning to leading the seismic studies of solar interior rotation and he was deeply involved in the understanding of the dynamics of the core of stars, when his life was tragically lost. The conference focused on dynamical aspects of the sun and stars, based on the large amount of data available on solar and stellar oscillations, and the extensive and detailed modelling now becoming feasible. Combining observations, seismic analysis, and modelling the meeting and this book serve as a fitting memorial to a close colleague and friend, much missed.
The small bodies in planetary systems are indicative of the material evo- tion, the dynamical evolution, and the presence of planets in a system. Recent astronomicalresearch,spaceresearch,laboratoryresearch,andnumericals- ulationsbroughtawealthofnewandexciting?ndingsonextra-solarplanetary systems and on asteroids, comets, meteoroids, dust, and trans-Neptunian - jects in the solar system. Progress in astronomical instrumentation led to the discovery and investigation of small bodies in the outer solar system and to observations of cosmic dust in debris disks of extra-solar planetary systems. Space research allowed for close studies of some of the small solar system bodies from spacecraft. This lecture series is intended as an introduction to the latest research results and to the key issues of future research. The ch- ters are mainly based on lectures given during a recent research school and on research activities within the 21st Century COE Program "Origin and Evolution of Planetary Systems" at Kobe University, Japan. In Chap. 1, Taku Takeuchi discusses the evolution of gas and dust from protoplanetary disks to planetary disks. Using a simple model, he studies v- cous evolution and photoevaporation as possible mechanisms of gas dispersal. He further considers how the dust grows into planetesimals. Motion of dust particles induced by gas drag is described, and then using a simple analytic model, the dust growth timescale is discussed.
Studying the complex physical systems of stellar jets necessitates the incorporation of nonlinear effects which occur on a wide variety of length and timescales. One of the primary methods used to study the physics of jets is numerical simulations that apply high performance computing techniques. Such techniques are also required for analysing the huge modern astrophysical datasets. This book examines those computing techniques. It is a collection of the lectures from the fifth and final school of the JETSET network, "Jets From Young Stars V: High Performance Computing in Astrophysics." It begins with an introduction to parallel programming techniques, with an emphasis on Message Passing Interface (MPI), before it goes on to review grid technology techniques and offer a practical introduction to Virtual Observatory. The second half of the book, then, is devoted to applications of high performance computing techniques, including 3D radiation transfer, to jet and star formation processes. Aimed at graduate students in astrophysics, this book presents state-of-the-art methods, thereby offering interesting new insights to researchers in the field.
This book is a comprehensive survey of the current state of knowledge about the dynamics and gravitational properties of cosmic strings treated in the idealized classical approximation as line singularities described by the Nambu-Goto action. The author's purpose is to provide a standard reference to all work that has been published since the mid-1970s and to link this work together in a single conceptual framework and a single notational formalism. A working knowledge of basic general relativity is assumed. The book will be essential reading for researchers and postgraduate students in mathematics, theoretical physics, and astronomy interested in cosmic strings.
This book is about the mathematical theory of light propagation in media on general-relativistic spacetimes. The first part discusses the transition from Maxwell's equations to ray optics. The second part establishes a general mathematical framework for treating ray optics as a theory in its own right, making extensive use of the Hamiltonian formalism. This part also includes a detailed discussion of variational principles (i.e., various versions of Fermat's principle) for light rays in general-relativistic media. Some applications, e.g. to gravitational lensing, are worked out. The reader is assumed to have some basic knowledge of general relativity and some familiarity with differential geometry. Some of the results are published here for the first time, e.g. a general-relativistic version of Fermat's principle for light rays in a medium that has to satisfy some regularity condition only.
A thorough introduction to modern ideas on cosmology and on the
physical basis of the general theory of relativity, An Introduction
to the Science of Cosmology explores various theories and ideas in
big bang cosmology, providing insight into current problems.
Assuming no previous knowledge of astronomy or cosmology, this book
takes you beyond introductory texts to the point where you are able
to read and appreciate the scientific literature, which is broadly
referenced in the book. The authors present the standard big bang
theory of the universe and provide an introduction to current
inflationary cosmology, emphasizing the underlying physics without
excessive technical detail.
Written by a leading expert on comets, this textbook is divided into seven main elements with a view to allowing advanced students to appreciate the interconnections between the different elements. The author opens with a brief introductory segment on the motivation for studying comets and the overall scope of the book. The first chapter describes fundamental aspects most usually addressed by ground-based observation. The author then looks at the basic physical phenomena in four separate chapters addressing the nucleus, the emitted gas, the emitted dust, and the solar wind interaction. Each chapter introduces the basic physics and chemistry but then new specific measurements by Rosetta instruments at comet Churyumov-Gerasimenko are brought in. A concerted effort has been made to distinguish between established fact and conjecture. Deviations and inconsistencies are brought out and their significance explained. Links to previous observations of comets Tempel 1, Wild 2, Hartley 2, Halley and others are made. The author then closes with three smaller chapters on related objects, the loss of comets, and prospects for future exploration. This textbook includes over 275 graphics and figures - most of which are original. Thorough explanations and derivations are included throughout the chapters. The text is therefore designed to support MSc. students and new PhD students in the field wanting to gain a solid overview of the state-of-the-art. |
You may like...
New Phenomena And New States Of Matter…
Cesar Augusto Zen Vasconcellos, Peter Otto Hess, …
Hardcover
R3,237
Discovery Miles 32 370
Analyzing the Physics of Radio…
Kim Ho Yeap, Kazuhiro Hirasawa
Hardcover
R6,524
Discovery Miles 65 240
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,653
Discovery Miles 26 530
We Seven - By the Astronauts Themselves
Scott M Carpenter, Gordon L Cooper, …
Paperback
Searching for Habitable Worlds - An…
Abel Mendez, Wilson Gonzalez-Espada
Hardcover
R2,979
Discovery Miles 29 790
|