![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
This thesis by Cole Johnston brings novel insights into the inner workings of young massive stars. By bridging the observational fields of binary stars and asteroseismology this thesis uses state of the art statistical techniques to scrutinise theories of modern stellar astrophysics. Developing upon the commonly used isochrone fitting methodology, the author introduces the idea of isochrone cloud fitting in order to account for the full breadth of physics observed in stars. The author combines this methodology with gravity mode asteroseismic analysis to asses the level of chemical mixing deep within the stellar core in order to determine the star's age and core mass. Wrapped into a robust statistical framework to account for correlations, this methodology is employed to analyse individual stars, multiple systems, and clusters alike to demonstrate that chemical mixing has dramatic impact on stellar structure and evolution.
A History of Astronomy, first published in 1907, offers a comprehensive introduction to the steady development of the science since its inception in the ancient world up to the momentous progress of the nineteenth century. It includes biographical material relating to the most famous names in the study of astronomy - Copernicus, Galileo, Newton, Herschel - and their contributions, clear and accessible discussions of key discoveries, as well as detailing the incremental steps in technology with which many of the turning points in astronomy were intimately bound up.
This thesis develops fundamental ideas and advanced techniques for studying the Higgs boson's interactions with the known matter and force particles. The Higgs boson appears as an excitation of the Higgs field, which permeates the vacuum. Several other phenomena in our Universe, such as dark energy, dark matter, and the abundance of matter over antimatter, remain unexplained. The Higgs field may prove to be the connection between our known world and the "dark" world, and studies of the Higgs boson's interactions are essential to reveal possible new phenomena. The unique feature of this work is simultaneous measurement of the Higgs boson's associated production (its context, to use the language of the title) and its decay (its end), while allowing for multiple parameters sensitive to new phenomena. This includes computer simulation with Monte Carlo techniques of the complicated structure of the Higgs boson interactions, the matrix-element calculation of per-event likelihoods for optimal observables, and advanced fitting methods with hundreds of intricate components that cover all possible parameters and quantum mechanical interference. This culminates in the most advanced analysis of LHC data in the multi-parameter approach to Higgs physics in its single golden four-lepton decay channel to date. Optimization of the CMS detector's silicon-based tracking system, essential for these measurements, is also described.
E A Milne was one of the giants of 20th century astrophysics and cosmology. His bold ideas, underpinned by his Christianity, sparked controversy - he believed two time scales operate in the universe.Struggling against poverty, Milne won five scholarships to Cambridge, but he never finished his degree. In World War I he was invited to develop Horace Darwin's device for anti-aircraft gunnery and after the Armistice his prowess in ballistics took him straight to a Fellowship at Trinity College, Cambridge. By the age of thirty he was a Manchester professor and a Fellow of the Royal Society. At Oxford he battled to improve the university's attitude towards science, and established a world-centre of astrophysics. He suffered from Parkinsonism in his forties, the consequence of his having had encephalitis lethargica as a young man. However, buoyed by his Christian faith, he did not slacken his pace. When he died, twice widowed, the author - Milne's daughter - was a teenager.This book is born out of curiosity. The author's aim is to show the human face of science, how the course of her father's life was shaped by circumstance and by the influence of illustrious friends and colleagues such as Einstein, Eddington, G H Hardy, J B S Haldane, Hubble, F A Lindemann and Rutherford. Against all odds, Milne emerged as a scientific powerhouse - and a rebellious one at that.
The Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI) was founded at Nagoya University in 2010 under the directorship of T Maskawa, in celebration of the 2008 Nobel Prize in Physics for M Kobayashi and T Maskawa, both who are alumni of Nagoya University. In commemoration of the new KMI building in 2011, the KMI Inauguration Conference (KMIIN) was organized to discuss perspectives of various fields - both theoretical and experimental studies of particle physics and astrophysics - as the main objectives of the KMI activity. This proceedings contains a welcome address by T Maskawa conveying his hopes for KMI to create new revolutionary directions in the spirit of Shoichi Sakata, a great mentor of both Maskawa and Kobayashi. Invited speakers, world-leading scientists in the fields, and the young scientists at KMI contributed to this volume containing theoretical studies of strongly coupled gauge theories in view of LHC phenomenology, string theory approach and lattice studies as well as hot/dense QCD system, and also super-symmetric GUT models, etc., together with experimental studies of LHC physics, B physics, neutrino physics and the related astrophysics and cosmology. The volume yields a unique synergy of particle physics and astrophysics, closely related to the main activity of KMI encompassing particle theory (including lattice computer simulations), particle physics experiments, cosmology, and astrophysics observations.
Expanding on the concept of the authors' previous book "Electroweak Processes in External Electromagnetic Fields," this new book systematically describes the investigation methods for the effects of external active media, both strong electromagnetic fields and hot dense plasma, in quantum processes. Solving the solar neutrino puzzle in a unique experiment conducted with the help of the heavy-water detector at the Sudbery Neutrino Observatory, along with another neutrino experiments, brings to the fore electroweak physics in an active external medium. It is effectively demonstrated that processes of neutrino interactions with active media of astrophysical objects may lead, under some physical conditions, to such interesting effects as neutrino-driven shockwave revival in a supernova explosion, a "cherry stone shooting" mechanism for pulsar natal kick, and a neutrino pulsar. It is also shown how poor estimates of particle dispersion in external active media sometimes lead to confusion. The book will appeal to graduate and post-graduate students of theoretical physics with a prior understanding of Quantum Field Theory (QFT) and the Standard Model of Electroweak Interactions, as well as to specialists in QFT who want to know more about the problems of quantum phenomena in hot dense plasma and external electromagnetic fields.
Starbursts are important features of early galaxy evolution. Many of the distant, high-redshift galaxies we are able to detect are in a starbursting phase, often apparently provoked by a violent gravitational interaction with another galaxy. In fact, if we did not know that major starbursts existed, these conference proceedings testify that we would indeed have difficulties explaining the key properties of the Universe! These conference proceedings cover starbursts from the small-scale star-forming regions in nearby galaxies to galaxy-wide events at high redshifts; one of the major themes of the conference proved to be "scalability," i.e., can we scale up the small-scale events to describe the physics on larger scales. The key outcome of this meeting a" and these proceedings a" is a resounding "yes" as answer to this fundamental, yet profound question. The enhanced synergy facilitated by the collaboration among observers using cutting-edge ground and space-based facilities, theorists and modellers has made these proceedings into a true reflection of the state of the art in this very rapidly evolving field. Ample space is provided for summaries of the large number of talks by experts in the field, while the high-quality poster contributions are all contained on the accompanying CD-ROM, thus enhancing the information content.
This volume is a collection of the contributions to the 14th National Conference on Nuclear Structure in China (NSC2012). It provides an important updated resource in the nuclear physics literature for researchers and graduate students studying nuclear structure and related topics. Recent progress made in the study of nuclear spectroscopy of high-spin states, nuclear mass and half-life, nuclear astrophysics, super-heavy nuclei, unstable nuclei, density functional theory, neutron star and symmetry energy, nuclear matter, and nuclear shell model are covered.
This fascinating portrait of an amateur astronomy movement tells the story of how Charles Olivier recruited a hard-working cadre of citizen scientists to rehabilitate the study of meteors. By 1936, Olivier and members of his American Meteor Society had succeeded in disproving an erroneous idea about meteor showers. Using careful observations, they restored the public's trust in predictions about periodic showers and renewed respect for meteor astronomy among professional astronomers in the United States. Charles Olivier and his society of observers who were passionate about watching for meteors in the night sky left a major impact on the field. In addition to describing Olivier's career and describing his struggles with competitive colleagues in a hostile scientific climate, the author provides biographies of some of the scores of women and men of all ages who aided Olivier in making shower observations, from the Leonids and Perseids and others. Half of these amateur volunteers were from 13 to 25 years of age. Their work allowed Olivier and the AMS to contradict the fallacious belief in stationary and long-enduring meteor showers, bringing the theory of their origin into alignment with celestial mechanics. Thanks to Olivier and his collaborators, the study of meteors took a great leap forward in the twentieth century to earn a place as a worthy topic of study among professional astronomers.
What is the origin of the universe? Are we alone in the Universe? Using clear and plain language, the author explores these two interesting scientific-philosophical themes with a broad range of studies, including astronomy, cosmology, chemistry, biology, geology and planet science.The first part discusses the origins of everything, from the Big Bang to humankind. It follows the long course of evolution - from original matter to the formation of more complex structures, from the furthest galaxies to the nearest stars, from planets to organic molecules, from the first and most elementary forms of life through to the reptiles, the dinosaurs and the advent of man.The second part traces the history of the Earth and evaluates the risks of extinction in the future as predicted by scientists. Is the Earth the only habitable planet in the Universe? This question initiates the discussion on the importance of the Earth's position in the solar system and the significance of our geologically alive planet.The final part is dedicated to the search for extraterrestrial beings with identifiable life forms. It also describes attempts for searching, from the past to the near future.This remarkable book provides the best answers we have to the epic questions about us and our place in the universe.
Here is a fascinating reader-friendly exploration of "the phosphorus enigma." The volume attempts to answer the questions: How did phosphorus atoms, which are produced inside the inner cores of a handful of huge stars, become concentrated in relatively high proportions in the organisms composing Earth's biosphere? And how did these phosphate derivatives manage to be included in such a great variety of organic molecules playing essential biochemical roles in all known life forms? Due to the interdisciplinary nature of the topic, the volume is arranged in three sections. The first section introduces the fundamental concepts and notions of physics, chemistry, and biology necessary for the proper understanding of the topics discussed within an astronomical framework. The author then focuses on the role of phosphorus and its compounds within the context of chemical evolution in galaxies, considering its relevance in most essential biochemical functions as well as its peculiar chemistry under different physicochemical conditions. The third section provides an overall perspective on the role of phosphorus and its compounds in current areas of research of solid state physics, materials engineering, nanotechnology or medicine.
This thesis addresses the feasibility of the production of ultra-high-energy cosmic rays in starburst galaxies and active galactic nuclei. These astrophysical objects were theoretically proposed as candidate sources a long time ago. Nevertheless, the interest in them has been recently renewed due to the observational data collected by the Pierre Auger Observatory and the Telescope Array. In this work, a comprehensive review of the current status of the research on cosmic rays accelerators is provided, along with a summary of the principal concepts needed to connect these relativistic particles with electromagnetic and neutrino observations in the multi-messenger era. On one hand, the hypothesis of accelerating particles with energies above 10(1)8 eV in starburst superwinds is carefully revisited, taking into account the constraints imposed by the most recent electromagnetic observations. On the other hand, an alternative new model for the gamma emission of the nearby active galaxy NGC 1068 is presented. The implications of the results of these studies are discussed in terms of the contemporary observatories and prospects for future experiments are offered.
What is the origin of the universe? Are we alone in the Universe? Using clear and plain language, the author explores these two interesting scientific-philosophical themes with a broad range of studies, including astronomy, cosmology, chemistry, biology, geology and planet science.The first part discusses the origins of everything, from the Big Bang to humankind. It follows the long course of evolution - from original matter to the formation of more complex structures, from the furthest galaxies to the nearest stars, from planets to organic molecules, from the first and most elementary forms of life through to the reptiles, the dinosaurs and the advent of man.The second part traces the history of the Earth and evaluates the risks of extinction in the future as predicted by scientists. Is the Earth the only habitable planet in the Universe? This question initiates the discussion on the importance of the Earth's position in the solar system and the significance of our geologically alive planet.The final part is dedicated to the search for extraterrestrial beings with identifiable life forms. It also describes attempts for searching, from the past to the near future.This remarkable book provides the best answers we have to the epic questions about us and our place in the universe.
Reflector antennas are widely used in the microwave and millimeter wavelength domain. Radio astronomers have developed techniques of calibration of large antennas with radio astronomical methods. These have not been comprehensively described. This text aims to fill this gap. It takes a practical approach to the characterisation of antennas. All calculations and results in the form of tables and figures have been made with Mathematica by Wolfram Research. The reader can use the procedures for the implementation of his own input data. The book should be of use to all who are involved in the design and calibration of large antennas, like ground station managers and engineers, practicing radio astronomers and graduate students in radio astronomy and communication technology.
In one way or another, Gerry Brown has been concerned with questions about the universe, about its vast expanse as well as about its most miniscule fundamental constituents of matter throughout his entire life. In his endeavours to understand the universe in many manifestations from nuclei all the way to the stars, he has been influenced by some of the most prominent physicists of the 20th century, and he himself, in turn, has influenced a great many scholars. This volume, a collection of articles dedicated to Gerry on his 85th birthday, contains discussions of many of the issues which have attracted his interest over the years. The contributions are written by his former students, co-authors, colleagues and admirers and they are strongly influenced by Gerry's own scientific tastes. With this compilation we want to express our respect, admiration and gratitude; we want to celebrate Gerry's scientific and scholarly achievements, the inspirational quality of his teaching and the enthusiasm which he himself displayed in his research and which stimulated so many of his students and colleagues over the decades.
The conference was aimed at promoting contacts between scientists involved in solar-terrestrial physics, space physics, astroparticle physics and cosmology both from the theoretical and the experimental approach. The conference was devoted to physics and physics requirements, survey of theoretical models and performances of detectors employed (or to be employed) in experiments for fundamental physics, astroparticle physics, astrophysics research and space environment - including Earth magnetosphere and heliosphere and solar-terrestrial physics. Furthermore, cosmic rays have been used to extent the scientific research experience to teachers and students with air shower arrays and other techniques. Presentations included the following subjects: advances in physics from present and next generation ground and space experiments, dark matter, double-beta decay, high-energy astrophysics, space environment, trapped particles, propagation of cosmic rays in the Earth atmosphere, Heliosphere, Galaxy and broader impact activities in cosmic rays science. The open and flexible format of the Conference was conducive to fruitful exchanges of points of view among participants and permitted the evaluation of the progresses made and indicated future research directions. The participants were experienced researchers but also graduate students (MSc and PhD) and recent postdoctoral fellows.
The universe comes down to earth in K. C. Cole's Mind Over Matter,
a fresh and witty exploration of physics, cosmology, mathematics,
astronomy, and more. Like no other science writer, Cole demystifies
scientific concepts and humanizes the people who study them.
Beginning with a discussion of how "the mind creates reality as
well as muddles it," she then peeks into the stories behind
science's great minds and into their playful side, and concludes by
illuminating the relationship between science and society. Cole's
remarkable work brings science to the reader's doorstep, revealing
the universe to be elegant, intriguing, and relevant to politics,
art, and every dimension of human life.
This book provides a comprehensive survey of the state-of-the-art in the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling quantum mechanics to be based on the principle of relativity provided this principle is extended to scale transformations of the reference system. In the framework of such a newly-generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that goes beyond and integrates the classical and the quantum regimes. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.
ThlS volume contalns a serles of lectures presented at the NATO Advanced Study Instltute on Hlgh Energy Phenomena Around Collapsed Stars, held ln Cargese, CorSlca from September 2 tlll Septemcer 13, 1985. The course was planned ln collaboratlon wlth a SClentlflC Organiz ing Commlttee (C. Cesarsky, France; A. Lyne, U.K.; D. Plnes, USA; J. Trlimper, W. Germany; E. Van den Heuvel, The Netherlands and L. Wolt]er, E.S.O., Mlinlch) and was fully supported by the NATO SClentlflc Affalrs Dlvlsion. It was organized wlth the alm of provldlng students and young researchers with an up-to-date account on the subject of galactlc hlgh energy astrophyslCS and was attended by about 60 researchers from many countrles. The lectures and seminars dld represent a complete coverage of our present knowledge and understandlng of Supernovae, Supernovae Remnants, Pulsars, sources of hlgh energy photons and partlcles. Most of them are reproduced ln thlS volume although unfortunately a few speakers chose not to submlt thelr text Slnce they felt that the materlal was already amply avallable ln the eXlstlng llterature. I wlsh to express my gratltude to the SClentlflc Affalrs Dlvislon of the North Atlantlc Treaty Organlzatlon for the generous support glven to the Instltute and to the lecturers and particlpants who contributed so much to the success of the course."
The search for Dark Matter in the Universe has established itself as one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and future perspectives, stressing in particular the interplay between astro- and particle physics.
S Chandrasekhar, popularly known as Chandra, was one of the foremost scientists of the 20th century. The year 2010 marks the birth centenary of Chandra. His unique style of research, inward bound, seeking a personal perspective to master a particular field, and then pass on to another was so unique that it will draw considerable interest and attention among scholars. As Chandra elucidates in the preface, "The various installments describe in detail the evolution of my scientific work during the past forty years and records each investigation, describing the doubts and the successes, the trials and the tribulations. And the parts my various associates and assistants played in the completion of the different investigations are detailed." It is indeed a remarkable and rare document, fascinating to read and experience the joys, frustrations and struggles of a creative mind.
S Chandrasekhar, popularly known as Chandra, was one of the foremost scientists of the 20th century. The year 2010 marks the birth centenary of Chandra. His unique style of research, inward bound, seeking a personal perspective to master a particular field, and then pass on to another was so unique that it will draw considerable interest and attention among scholars. As Chandra elucidates in the preface, "The various installments describe in detail the evolution of my scientific work during the past forty years and records each investigation, describing the doubts and the successes, the trials and the tribulations. And the parts my various associates and assistants played in the completion of the different investigations are detailed." It is indeed a remarkable and rare document, fascinating to read and experience the joys, frustrations and struggles of a creative mind.
This book presents the proceedings of the IVth Azores International Advanced School in Space Sciences entitled "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds". The school addressed the topics at the forefront of scientific research being conducted in the fields of asteroseismology and exoplanetary science, two fields of modern astrophysics that share many synergies and resources. These proceedings comprise the contributions from 18 invited lecturers, including both monographic presentations and a number of hands-on tutorials.
The book begins with a historical review of four major theories for the origin of the Solar System in particular, or of planets in general, which highlight the major problems that need to be solved by any plausible theory. In many theories, including that which form the major theme of this book, the formation of planets and stars is intimately linked, so four chapters are devoted to the processes that can be described as the birth, life and death of stars.Recent observations that have revealed the existence of planets around many Sun-like stars are described in detail, followed by a clear exposition of the Capture Theory for the origin of planets. Many aspects of this theory are illustrated with sophisticated computer modelling that convincingly demonstrates the plausibility of the theory. The Capture Theory is in complete accord with all observations, including the estimate it gives for the proportion of Sun-like stars with planets. It is the only theory that sits comfortably with all present observational and theoretical constraints.The general theory of planet formation does not explain the detailed structure of the Solar System. An early postulated collision of two major planets is shown to explain many disparate features of the Solar System - the nature of the terrestrial planets, surface features of the Moon and its relationship with Earth, asteroids, comets and dwarf planets, the relationship between Neptune, Triton and Pluto and the characteristics of meteorites, including the isotopic anomalies found in them. The postulate of a planetary collision is given support by a 2009 NASA observation of the residue of such an event around a distant young star.
The book begins with a historical review of four major theories for the origin of the Solar System in particular, or of planets in general, which highlight the major problems that need to be solved by any plausible theory. In many theories, including that which form the major theme of this book, the formation of planets and stars is intimately linked, so four chapters are devoted to the processes that can be described as the birth, life and death of stars. Recent observations that have revealed the existence of planets around many Sun-like stars are described in detail, followed by a clear exposition of the Capture Theory for the origin of planets. Many aspects of this theory are illustrated with sophisticated computer modelling that convincingly demonstrates the plausibility of the theory. The Capture Theory is in complete accord with all observations, including the estimate it gives for the proportion of Sun-like stars with planets. It is the only theory that sits comfortably with all present observational and theoretical constraints. The general theory of planet formation does not explain the detailed structure of the Solar System. An early postulated collision of two major planets is shown to explain many disparate features of the Solar System - the nature of the terrestrial planets, surface features of the Moon and its relationship with Earth, asteroids, comets and dwarf planets, the relationship between Neptune, Triton and Pluto and the characteristics of meteorites, including the isotopic anomalies found in them. The postulate of a planetary collision is given support by a 2009 NASA observation of the residue of such an event around a distant young star. |
You may like...
Psychoanalysis and Politics - Histories…
Joy Damousi, Mariano Ben Plotkin
Hardcover
R2,080
Discovery Miles 20 800
Greenland's Stolen Indigenous Children…
Stephen James Minton
Paperback
R1,212
Discovery Miles 12 120
|