![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
This book attempts to explain the core of physics, the origin of everything and anything. It explains why physics at the most fundamental level, and especially quantum mechanics, has moved away from naive realism towards abstraction, and how this means that we can begin to answer some of the most fundamental questions which trouble us all, about space, time, matter, etc. It provides an original approach based on symmetry which will be of interest to professionals as well as lay people.In the book, virtually no prior knowledge is assumed, but the readers are allowed to participate in a discussion of very deep ideas. Throughout the book, the readers are guided through some important ideas which need to be explained mathematically. The key fact is that the mathematics is not about calculation but about concepts. Much of it can be simplified using coloured text and diagrams. This means that ideas which are important to everyone who wants to know how the universe is structured are not glossed over as being too difficult for anybody but the experts.This book is written for a wide audience. Experts will gain a great deal, but so will lay readers. This would be an ideal book for students to read before progressing to another book by the author, The Foundations of Physical Law.
A very attractive feature of the theory of general relativity is that it is a perfectexampleofa"falsi?able"theory:notunableparameterispresentinthe theory and therefore even a single experiment incompatible with a prediction of the theory would immediately lead to its inevitable rejection, at least in the physical regime of application of the aforementioned experiment. This fact provides additional scienti?c value to one of the boldest and most fascinating achievements of the human intellect ever, and motivates a wealth of e?orts in designing and implementing tests aimed at the falsi?cation of the theory. The ?rst historical test on the theory has been the de?ection of light gr- ing the solar surface (Eddington 1919): the compatibility of the theory with this ?rst experiment together with its ability to explain the magnitude of the perihelion advance of Mercury contributed strongly to boost acceptance and worldwideknowledge.However,technologicallimitations preventedphysicists from setting up more constraining tests for several decades after the formu- tion of the theory. In fact, a relevant problem with experimental general r- ativity is that the predicted deviations from the Newtonian theory of gravity areverysmallwhentheexperimentsarecarriedoutinterrestriallaboratories.
William Huggins (1824-1910) was celebrated in his lifetime as the father of astrophysics. The letters and observatory notebooks contained in this edition allow Huggins' important role in the development of astrophysics to fully emerge. Material comes from archives around the world and is previously unpublished.
A new look at the first few seconds after the Big Bang-and how research into these moments continues to revolutionize our understanding of our universe Scientists in recent decades have made crucial discoveries about how our cosmos evolved over the past 13.8 billion years. But we still know little about what happened in the first seconds after the Big Bang. At the Edge of Time focuses on what we have learned and are striving to understand about this mysterious period at the beginning of cosmic history. Delving into the remarkable science of cosmology, Dan Hooper describes many of the extraordinary questions that scientists are asking about the origin and nature of our world. Hooper examines how the Large Hadron Collider and other experiments re-create the conditions of the Big Bang, how we may finally discover the way dark matter was formed during our universe's first moments, and how, with new telescopes, we are lifting the veil on the era of cosmic inflation. At the Edge of Time presents an accessible investigation of our universe and its birth.
This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.
Ever since 1911, the Solvay Conferences have shaped modern physics. The format is quite different from other conferences as the emphasis is placed on discussion. The 26th edition held in October 2014 in Brussels and chaired by Roger Blandford continued this tradition and addressed some of the most pressing open questions in the fields of astrophysics and cosmology, gathering many of the leading figures working on a wide variety of profound problems.The proceedings contain the 'rapporteur talks' giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions: 'Neutron Stars', 'Black Holes', 'Cosmic Dawn', 'Dark Matter' and 'Cosmic Microwave Background'.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants - expert, yet lively and sometimes contentious - have been edited to retain to retain their flavor and are reproduced in full. The reader is taken on a breathtaking ride through 42 years of extraordinary discovery since astrophysics was last on the Solvay program and 57 years since cosmology was last discussed.
This book explores the extraordinary difficulties a nation-state's law enforcement and military face in attempting to prevent cyber-attacks. In the wake of recent assaults including the denial of service attack on Estonia in 2007 and the widespread use of the Zeus Trojan Horse software, Susan W. Brenner explores how traditional categories and procedures inherent in law enforcement and military agencies can obstruct efforts to respond to cyberthreats. Brenner argues that the use of a territorially-based system of sovereignty to combat cyberthreats is ineffective, as cyberspace erodes the import of territory. This problem is compounded by the nature of cybercrime as a continually evolving phenomenon driven by rapid and complex technological change. Following an evaluation of the efficacy of the nation-state, the book goes on to explore how individuals and corporations could be integrated into a more decentralized, distributed system of cyberthreat control. Looking at initiatives in Estonia and Sweden which have attempted to incorporate civilians into their cyber-response efforts, Brenner suggests that civilian involvement may mediate the rigid hierarchies that exist among formal agencies and increase the flexibility of any response. This book will be of great interest to students and researchers of information technological law and security studies.
The observational evidence for the existence of black holes has grown significantly over recent decades. Stellar-mass black holes are detected as X-ray sources in binary systems, while supermassive black holes, with masses more than a million times the mass of the Sun, lurk in the nuclei of galaxies. These proceedings provide a useful and up-to-date overview of the observations of black holes in binaries, in the center of the Milky Way, and in the nuclei of galaxies, presented by leading expert astronomers. Special attention is given to the formation (including the recent evidence from gamma-ray bursts), physical properties, and demographics of black holes.
NAMED A BEST BOOK OF 2022 BY PUBLISHERS WEEKLY After a few billion years of bearing witness to life on Earth, of watching one hundred billion humans go about their day-to-day lives, of feeling unbelievably lonely, and of hearing its own story told by others, The Milky Way would like a chance to speak for itself. All one hundred billion stars and fifty undecillion tons of gas of it. It all began some thirteen billion years ago, when clouds of gas scattered through the universe's primordial plasma just could not keep their metaphorical hands off each other. They succumbed to their gravitational attraction, and the galaxy we know as the Milky Way was born. Since then, the galaxy has watched as dark energy pushed away its first friends, as humans mythologized its name and purpose, and as galactic archaeologists have worked to determine its true age (rude). The Milky Way has absorbed supermassive (an actual technical term) black holes, made enemies of a few galactic neighbors, and mourned the deaths of countless stars. Our home galaxy has even fallen in love. After all this time, the Milky Way finally feels that it's amassed enough experience for the juicy tell-all we've all been waiting for. Its fascinating autobiography recounts the history and future of the universe in accessible but scientific detail, presenting a summary of human astronomical knowledge thus far that is unquestionably out of this world.
Spectropolarimetry embraces the most complete and detailed measurement and analysis of light, as well as its interaction with matter. This book provides an introductory overview of the subject because it is playing an increasingly important role in modern solar observations. Chapters include a comprehensive description of the polarization state of polychromatic light and its measurement; an overview of astronomical polarimetry; and the formation of spectral lines in the presence of a magnetic field. The text is a valuable reference for graduates and researchers in astrophysics, solar physics and optics.
This thorough examination of the roots and motivations for U.S. national security space policy provides an essential foundation for considering current space security issues. During the Cold War era, space was an important arena for the clashing superpowers, yet the United States government chose not to station weapons there. Today, new space security dynamics are evolving that reflect the growing global focus upon the broad potential contributions of space capabilities to global prosperity and security. Space and Security: A Reference Handbook examines how the United States has developed and implemented policies designed to use space capabilities to enhance national security, providing a clear and complete evaluation of the origins and motivations for U.S. national security space policies and activities. The author explains the Eisenhower Administration's quest to develop high-technology intelligence collection platforms to open up the closed Soviet state, and why it focused on developing a legal regime to legitimize satellite overflight for the purposes of gathering intelligence. Provides a succinct analysis of key current national security space issues that includes all key national security space policy statements from 1955 to the present day Presents an extensive chronology of events from the mid-20th century to the present Contains 45 biographies of politicians, NASA officials, and military personnel who have shaped U.S. space policy Includes a descriptive directory of government and private organizations, including advocacy groups, government agencies, and advisory committees
How do three celestial bodies move under their mutual gravitational attraction? This problem has been studied by Isaac Newton and leading mathematicians over the last two centuries. Poincare's conclusion, that the problem represents an example of chaos in nature, opens the new possibility of using a statistical approach. For the first time this book presents these methods in a systematic way, surveying statistical as well as more traditional methods. The book begins by providing an introduction to celestial mechanics, including Lagrangian and Hamiltonian methods, and both the two and restricted three body problems. It then surveys statistical and perturbation methods for the solution of the general three body problem, providing solutions based on combining orbit calculations with semi-analytic methods for the first time. This book should be essential reading for students in this rapidly expanding field and is suitable for students of celestial mechanics at advanced undergraduate and graduate level.
This monograph attempts to provide a systematic and consistent survey of the fundamentals of the theory of free, linear, isentropic oscillations in spherically symmetric, gaseous equilibrium stars, whose structure is affected neither by axial rotation, nor by the tidal action of a companion, nor by a magnetic eld. Three parts can be distinguished. The rst part, consisting of Chaps.1-8, covers the basic concepts and equations, the distinction between spheroidal and toroidal normal modes, the solution of Poisson's differential equation for the perturbation of the gravitational potential, and Hamilton's variational principle. The second part, consisting of Chaps.9-13, is devotedto the possible existenceof waves propagating in the radial direction, the origin and classi cation of normal modes, the comple- ness of the normal modes, and the relation between the local stability with respect to convection and the global stability of a star. In the third part, Chaps.14-18 c- tain asymptoticrepresentationsof normalmodes. Chapter 19 deals with slow period changes in rapidly evolving pulsating stars. The theory is developed within the framework of the Newtonian theory of gr- itation and the hydrodynamics of compressible uids. It is described in its present status, with inclusion of open questions. We give preference to the use of the adjective "isentropic" above that of the adjective "adiabatic," since, from a thermodynamic point of view, these stellar - cillations are described as reversible adiabatic processes and thus as processes that take place at constant entropy.
The magnetosphere is the region in which the solar wind interacts with the Earth's magnetic field, the zone which screens the Earth from most of the harmful cosmic rays which daily bombard it. The Aurora Borealis, or Norhun lights, other such phenourena result from the interaction of particles in the solar wind and the magnetosphere. Planetary physicists, geophysicists, plasma astrophysicists, and scientists involved with astronautics all have a primary interest in the configuration and dynamics of the magnetosphere, and much research is devoted to convection (the circulation of solarwind plastma in the magnetiosphere) and substorms, which are linked to the aurorae and thought to stimulate convection. In this book, one of the leading scientists in the field presents a synthesis of current knowledge on convection and substorms and proposes that the Planetary physicists, geophysicists, plasma astrophysicists, and scientists involved with astronautics all have a primary interest in the configuration and dynamics of the magnetosphere, and much research is devoted to convection (the circulation of solarwind plastma in the magnetiosphere) and substorms, which are linked to the aurorae and thought to stimulate convection. In this book, one of the leading scientists in the field presents a synthesis of current knowledge on convection and substorms and proposes that the steady reconnection model be replaced by a model of multiple tail reconnection events, in which many mutually interdependent reconnections occur.
Our universe seems strangely "biophilic," or hospitable to life. Is this happenstance, providence, or coincidence? According to cosmologist Martin Rees, the answer depends on the answer to another question, the one posed by Einstein's famous remark: "What interests me most is whether God could have made the world differently." This highly engaging book explores the fascinating consequences of the answer being "yes." Rees explores the notion that our universe is just a part of a vast "multiverse," or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. Rees begins by exploring the nature of our solar system and examining a range of related issues such as whether our universe is or isn't infinite. He asks, for example: How likely is life? How credible is the Big Bang theory? Rees then peers into the long-range cosmic future before tracing the causal chain backward to the beginning. He concludes by trying to untangle the paradoxical notion that our entire universe, stretching 10 billion light-years in all directions, emerged from an infinitesimal speck. As Rees argues, we may already have intimations of other universes. But the fate of the multiverse concept depends on the still-unknown bedrock nature of space and time on scales a trillion trillion times smaller than atoms, in the realm governed by the quantum physics of gravity. Expanding our comprehension of the cosmos, Our Cosmic Habitat will be read and enjoyed by all those--scientists and nonscientists alike--who are as fascinated by the universe we inhabit as is the author himself.
Published under the auspices of the Royal Astronomical Society, this volume contains a set of extensive school tested lectures, with the aim to give a coherent and thorough background knowledge of the subject and to introduce the latest developments in N-body computational astrophysics. The topics cover a wide range from the classical few-body problem with discussions of resonance, chaos and stability to realistic modelling of star clusters as well as descriptions of codes, algorithms and special hardware for N-body simulations. This collection of topics, related to the gravitational N-body problem, will prove useful to both students and researchers in years to come. 1) Published under the auspices of the Royal Astronomical Society.
In a universe filled by chaos and disorder, one physicist makes the radical argument that the growth of order drives the passage of time -- and shapes the destiny of the universe. Time is among the universe's greatest mysteries. Why, when most laws of physics allow for it to flow forward and backward, does it only go forward? Physicists have long appealed to the second law of thermodynamics, held to predict the increase of disorder in the universe, to explain this. In The Janus Point, physicist Julian Barbour argues that the second law has been misapplied and that the growth of order determines how we experience time. In his view, the big bang becomes the "Janus point," a moment of minimal order from which time could flow, and order increase, in two directions. The Janus Point has remarkable implications: while most physicists predict that the universe will become mired in disorder, Barbour sees the possibility that order -- the stuff of life -- can grow without bound. A major new work of physics, The Janus Point will transform our understanding of the nature of existence.
This is an introduction to the basic tools of mathematics needed to understand the relation between knot theory and quantum gravity. The book begins with a rapid course on manifolds and differential forms, emphasizing how these provide a proper language for formulating Maxwell's equations on arbitrary spacetimes. The authors then introduce vector bundles, connections and curvature in order to generalize Maxwell theory to the Yang-Mills equations. The relation of gauge theory to the newly discovered knot invariants such as the Jones polynomial is sketched. Riemannian geometry is then introduced in order to describe Einstein's equations of general relativity and show how an attempt to quantize gravity leads to interesting applications of knot theory.
Black holes are undoubtedly one of the most fascinating discoveries of modern astronomy, and their description one of the most daring intellectual feats of modern times. They have already become legendary, forming the basis of many myths, fantasies and science fiction movies. Are they really the monsters which devour light and stars; bottomless celestial pits into which all matter is sucked and crushed? Are they an observable reality, or are they just hypothetical objects from the theory of relativity? In answering such questions the author takes us on a fabulous journey through space and time. Dr Jean-Pierre Luminet is an astronomer at Meudon Observatory in France, a specialist on the subject of black holes, and has also acquired a reputation for being a gifted writer and communicator. In this book he makes the subject of black holes accessible to any interested reader, who will need no mathematical background.
This volume takes an interdisciplinary approach to the evolution of terrestrial planets, addressing the topic from the perspectives of planetary sciences, geochemistry, geophysics and biology, and solar and astrophysics. The review papers analyze the chemical, isotopic and elemental evolution of the early Solar System, with specific emphasis on Venus, Earth, and Mars. They discuss how these factors contribute to our understanding of accretion timescales, volatile delivery, the origin of the Moon and the evolution of atmospheres and water inventories of terrestrial planets. Also explored are plate tectonic formation, the origin of nitrogen atmospheres and the prospects for exoplanet habitability.The papers are forward-looking as well, considering the importance of future space missions for understanding terrestrial planet evolution in the Solar System and beyond. Overall, this volume shall be useful for academic and professional audiences across a range of scientific disciplines. Previously published in Space Science Reviews in the Topical Collection "Reading Terrestrial Planet Evolution in Isotopes and Element Measurements"
This book builds on the fluid and kinetic theory of equilibria and waves presented in a companion textbook, Basic Space Plasma Physics (by the same authors), but can also serve as a stand-alone text. It extends the field covered there into the domain of plasma instability and nonlinear theory. The book provides a representative selection of the many possible macro- and microinstabilities in a space plasma, from the Rayleigh-Taylor and Kelvin-Helmholtz to electrostatic and electromagnetic kinetic instabilities. Their quasilinear stabilization and nonlinear evolution and their application to space physics problems are treated. The chapters on nonlinear theory include nonlinear waves, weak turbulence and strong turbulence, all presented from the viewpoint of their relevance to space plasma physics. Special topics include auroral particle acceleration, soliton formation and caviton collapse, anomalous transport, and the theory of collisionless shocks.
This book focuses on the non-traditional branches of physics and mechanics of shock waves that have arisen recently in connection with the intensive study of these waves in a wide variety of phenomena - from nuclear matter to clusters of galaxies. The book is devoted to the various physical phenomena and properties of intense shock waves. The author addresses methods of generation, diagnostics, as well as theoretical methods for describing shock waves at extremely high pressures and temperatures in laboratory and quasi-laboratory conditions. The state of materials with high energy density generated by shock wave compression is discussed. In addition, the book aims to systematize, generalize, and describe from a universal viewpoint the extensive theoretical and experimental material on the physics of high energy densities - the physics and mechanics of intense shock waves. The book is based on lectures delivered by the author at the Moscow Institute of Physics and Technology, the Higher School of Physics of Rosatom State Nuclear Energy Corporation, as well as overviews presented at many scientific conferences and symposia. It is useful to a wide range of researchers in natural sciences, giving them access to original works and allowing them to navigate the fascinating problems of the modern science of intense shock waves.
A sweeping account of the century of experimentation that confirmed Einstein's general theory of relativity, bringing to life the science and scientists at the origins of relativity, the development of radio telescopes, the discovery of black holes and quasars, and the still unresolved place of gravity in quantum theory. Albert Einstein did nothing of note on May 29, 1919, yet that is when he became immortal. On that day, astronomer Arthur Eddington and his team observed a solar eclipse and found something extraordinary: gravity bends light, just as Einstein predicted. The finding confirmed the theory of general relativity, fundamentally changing our understanding of space and time. A century later, another group of astronomers is performing a similar experiment on a much larger scale. The Event Horizon Telescope, a globe-spanning array of radio dishes, is examining space surrounding Sagittarius A*, the supermassive black hole at the center of the Milky Way. As Ron Cowen recounts, the foremost goal of the experiment is to determine whether Einstein was right on the details. Gravity lies at the heart of what we don't know about quantum mechanics, but tantalizing possibilities for deeper insight are offered by black holes. By observing starlight wrapping around Sagittarius A*, the telescope will not only provide the first direct view of an event horizon-a black hole's point of no return-but will also enable scientists to test Einstein's theory under the most extreme conditions. Gravity's Century shows how we got from the pivotal observations of the 1919 eclipse to the Event Horizon Telescope, and what is at stake today. Breaking down the physics in clear and approachable language, Cowen makes vivid how the quest to understand gravity is really the quest to comprehend the universe.
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet". Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out. |
![]() ![]() You may like...
Applications of Sliding Mode Control
Nabil Derbel, Jawhar Ghommam, …
Hardcover
R5,069
Discovery Miles 50 690
Imaging of Bone Tumors and Tumor-Like…
A. Mark Davies, Murali Sundaram, …
Hardcover
R6,028
Discovery Miles 60 280
|