![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Astrophysics
The Physics of Solar and Stellar Coronae provides the first comprehensive summary of the physical processes and phenomena occurring in solar and stellar coronae as observed at X-ray and other wavelengths. The book provides an early summary of the spectacular new solar X-ray observations being obtained with the Yohkoh satellite that are dramatically changing our understanding of the dynamics of the solar corona. With the perspective of two years' observations at X-ray and extreme ultraviolet wavelengths by the ROSAT satellite, many authors present new insights into the basic physical processes occurring in the coronae of stars across the Hertzsprung--Russell Diagram including both pre-main sequence and post-main sequence stars. Detailed models for the hot plasmas typically contained in magnetic loops in both stellar and solar coronae are presented to explain X-ray data obtained with the earlier X-ray instruments on Skylab, SMM, Einstein, and EXOSAT. The book includes papers on coronal observations obtained at other wavelengths and papers of the history of Palermo Astronomical Observatory. The Physics of Solar and Stellar Coronae is intended for researchers in the fields of solar physics and stellar astrophysics and will be a useful resource book for graduate level astrophysics courses. (ABSTRACT) This is the first comprehensive summary of the physical processes and phenomena occurring in solar and stellar coronae. Spectacular new solar X-ray observations by the Yohkoh satellite and stellar observations by ROSAT are highlighted, together with theoretical papers and detailed analyses of earlier data from Skylab, SMM, Einstein, and EXOSAT. Included are papers on coronal observations at other wavelengths and on the history of Palermo Astronomical Observatory.
Despite remarkable advances in astronomy, space research, and related technology since the first edition of this book was published, the philosophy of the prior editions has remained the same throughout. However, because of this progress, there is a need to update the information and present the new findings. In the fourth edition of Astronomy: Principles and Practice, much like the previous editions, the celebrated authors give a comprehensive and systematic treatment to the theories of astronomy. This reference furthers your study of astronomy by presenting the basic software and hardware, providing several straightforward mathematical tools, and discussing some simple physical processes that are either involved in the astronomer's tools of trade or concerned in the mechanisms associated with astronomical bodies. The first six chapters introduce the simple observations that can be made by the eye as well as discuss how such observations were interpreted by previous civilizations. The next several chapters examine the interpretation of positional measurements and the basic principles of celestial mechanics. The authors then explore radiation, optical telescopes, and radio and high-energy technologies. They conclude with practical projects and exercises. New to the Fourth Edition: Revised values such as the obliquity of the ecliptic Expanded material that is devoted to new astronomies and techniques such as optical data recording A listing of Web sites that offer information on relevant astronomical events Revised and expanded, this edition continues to offer vital information about the fundamentals of astronomy. Astronomy: Principles and Practice, Fourth Edition satisfies the need of anyone who has a strong desire to understand the philosophy and applications of the science of astronomy.
The 157th IAU Symposium "The Cosmic Dynamo" was entirely dedicated to dynamo processes, which are fundamental to all cosmic scales. Dynamo theory concerns one of the few truly key questions of recent cosmic physics. A complicated interplay of rotation, magnetism and turbulence determines stellar and galactic activity for almost all the short and medium time scales. Behind these multiform phenomena, the cosmic dynamo works in various guises, all involving inductive and dissipative equilibria in rotating turbulent cosmic plasmas. This book presents an up-to-date survey on investigations and results of dynamo theory and related observations. It is intended for graduate scientists working in the field of cosmical magnetism and its related problems, especially convection, turbulence and, more generally, nonlinear physics.
A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners.
While the emergence and evolution of solar surface magnetic flux reveals what goes on in the solar interior, the interplay of convection and magnetic field in the photosphere regulates the field dispersal and drives the instabilities which heat the outer solar atmosphere. This book presents a synthesis between observers and theorists, both with regard to the magnetic elements which make up solar magnetic fields (ranging from tiny flux tubes to whole active regions), and to the surface patterns in which these elements display properties of the subsurface dynamo. A major breakthrough comes from numerical simulations. Modelling of flux concentration, flux tube dynamics, penumbral toplogy, umbral fine structure, and so on, turns solar physics into an experimental science. The reviews and research papers in this volume provide an overview of the solar frontier of astrophysical magnetohydrodynamics. The elements and patterns of solar surface magnetism contain much information about the subsurface solar dynamo, as well as on the magnetically-dominated energy budget and structuring of the outer solar atmosphere. The volume treats high-resolution solar polarimetry, the physics of solar magnetic elements, and the information contained in their patterns of emergence on the solar surface in depth, with a balance between theoretical and observational studies.
Our current perspective has arisen over millennia, through falling apples, elevator thought experiments and stars spiralling into black holes; Free fall and self-force in general relativity. In fact, we do not have in mind to make a 1:1 reflection of the school. The ordering has been rearranged to tie articles together more coherently. We also propose to ask authors to focus their contributions according to the title we have suggested and to give a more complete description of current and future directions. We expect this will add to the volume s value for all anticipated readers. This volume has the unique feature of presenting a multifaceted approach to mass, which is intended mainly for graduate students and young doctoral researchers in the field of gravitation, who might be hoping to find a concise and introductory presentation of advanced topics outside their research field. It is true that research from the infinitesimal scale of particle physics to the cosmic scale of the universe is concerned with the mass. While there have been spectacular advances in physics during the past century, mass still remains as a mysterious entity at the forefront of current research. Particle accelerators in the quest for the Higgs boson, laser interferometers sensitive enough to respond to gravitational waves, equivalence principle tests and detectors for dark matter are among the most ambitious and expensive experiments that fundamental physics has ever envisaged, and strongly attest to this fact. Both the self-force and radiation reaction are, in fact, lively topics of research. Related to the nature of motion, they have been hotly debated within general relativity from the inception of the theory. Recent developments have shown that radiation reaction is unavoidable in determining the gravitational waveforms emitted from a source such as the capture of a solar mass star by super-massive black hole (EMRI). The main theme of this volume is mass and its motion within general relativity (and other theories of gravity), particularly for compact bodies, to which many articles directly refer. Within this framework, there are chapters on post-Newtonian and related methods (Blanchet, Gourgoulhon and Jaramillo, Nagar, Schafer), as well as on the self-force approach to the analysis of motion (Barack, Detweiler, Gal tsov, Poisson, Wald, Whiting), summarised along with an historic development of the field (Spallicci) and a snapshot on the state of the art (Burko). Note that self-acceleration depends directly on the mass of the body experiencing it. Mass itself is essential for this effect on motion. Auxiliary chapters set the context for these theoretical contributions within the wider context of experimental physics. The space mission LISA (Jennrich) has been designed to detect the gravitational waves from EMRI captures, while other LISA sources may have electromagnetic counterparts (van Putten). Motion in modern gravitation must confront alternative theories (Esposito-Farese) and it must to be comprehensible within a quantum context (Noui), and demands an account of the relation between vacuum fluctuations and inertia (Jaekel and Reynaud). A volume centred on the fundamental role of mass in physics should face issues related to the basic laws of mechanics proposed by Newton (Lammerzahl) and precision measurements (Davis). The role of the Higgs boson within physics is to give a mass to elementary particles (Djouadi), by interacting with all particles required to have a mass and thereby inducing inertia. Moreover, most mass in the universe is dark, and only indirectly detected. A proposed alternative to dark matter theories is due to a modified theory of gravity (Esposito-Farese) such as MOND (MOdified Newtonian Dynamics). Even if general relativity does not explain gravity, there still remains the fundamental problem of reconciling any theory of gravity with the physics of quantum fields (Noui), itself so well verified experimentally.
This is an introduction to the basic tools of mathematics needed to understand the relation between knot theory and quantum gravity. The book begins with a rapid course on manifolds and differential forms, emphasizing how these provide a proper language for formulating Maxwell's equations on arbitrary spacetimes. The authors then introduce vector bundles, connections and curvature in order to generalize Maxwell theory to the Yang-Mills equations. The relation of gauge theory to the newly discovered knot invariants such as the Jones polynomial is sketched. Riemannian geometry is then introduced in order to describe Einstein's equations of general relativity and show how an attempt to quantize gravity leads to interesting applications of knot theory.
This Festschrift dedicated to the 60th birth anniversary of Prof. Sandip K. Chakrabarti, a well-known Indian astrophysicist, presents a collection of contributions by about fifty scientists who work on diverse topics in contemporary astrophysics and space science including new and low-cost balloon borne experiments, planetary science, astrochemistry and the origin of life, ionospheric research and earthquake predictions, relativistic astrophysics around black holes, and finally, the observational signatures and radiative properties of compact objects. All the authors are well known scholars in their respective subject and are all PhD students of Prof. Sandip K. Chakrabarti. The book demonstrates a two-dimensional evolution of research areas triggered by Sandip Chakrabarti over the past few decades. The first dimension represents the evolution and diversification of Chakrabarti's own research in which new students were trained. A second dimension arises from the evolution of the research topics pursued by Chakrabarti's fifty odd doctoral students, many of whom have become renowned scientists in their own right, after starting with a certain subject under Chakrabarti and then migrating to completely new subjects with dexterity. The editors have compiled and edited the articles appropriately to some extent to suit the spirit of this Festschrift on the one hand and to keep balance in diverse topics on the other. Thus this volume also provides an overview for whosoever wishes to enter the important subjects of compact objects, astrochemistry, ionospheric science or space exploration in near space. New graduates, PhD scholars, teachers and researchers will benefit from this volume. Moreover it is a record of tremendous success of a school in a range of vast topics.
The interaction of electromagnetic waves with matter has always been a fascinating subject of study. As matter in the universe is mostly in the plasma state, the study of electromagnetic waves in plasmas is of importance to astrophysics, space physics and ionospheric physics. The physics of electromagnetic wave interacting with electron beams and plasmas also serves as a basis for coherent radiation generation such as free electron laser and gyrotron and advanced accelerators. This monograph aims at reviewing the physical processes of linear and nonlinear collective interactions of electromagnetic waves with electron beams and unmagnetized plasmas.
A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners.
The mystery of gravity has captivated us for centuries. But what is gravity and how does it work? This engaging book delves into the bizarre and often counter-intuitive world of gravitational physics. Join distinguished astrophysicist Professor Luciano Rezzolla on this virtual journey into Einstein's world of gravity, with each milestone presenting ever more fascinating aspects of gravitation. Through gentle exposure to concepts such as spacetime curvature and general relativity, you will discover some of the most curious consequences of gravitational physics, such as black holes, neutron stars and gravitational waves. The author presents and explains one of the most impressive scientific achievements of recent times: the first image of a supermassive black hole. Written by one of the key scientists involved in producing these results, you'll get a behind-the-scenes view of how the image was captured and discover what happens to matter and light near a black hole.
Stephen Hawking, the Lucasian Professor of Mathematics at Cambridge University, has made important theoretical contributions to gravitational theory and has played a major role in the development of cosmology and black hole physics. Hawking's early work, partly in collaboration with Roger Penrose, showed the significance of spacetime singularities for the big bang and black holes. His later work has been concerned with a deeper understanding of these two issues. The work required extensive use of the two great intellectual achievements of the first half of the Twentieth Century: general relativity and quantum mechanics; and these are reflected in the reprinted articles. Hawking's key contributions on black hole radiation and the no-boundary condition on the origin of the universe are included. The present compilation of Stephen Hawking's most important work also includes an introduction by him, which guides the reader though the major highlights of the volume. This volume is thus an essential item in any library and will be an important reference source for those interested in theoretical physics and applied mathematics. It is an excellent thing to have so many of Professor Hawking's most important contributions to the theory of black holes and space-time singularities all collected together in one handy volume. I am very glad to have them". Roger Penrose (Oxford) "This was an excellent idea to put the best papers by Stephen Hawking together. Even his papers written many years ago remain extremely useful for those who study classical and quantum gravity. By watching the evolution of his ideas one can get a very clear picture of the development of quantum cosmology during thelast quarter of this century". Andrei Linde (Stanford) "This review could have been quite short: 'The book contains a selection of 21 of Stephen Hawking's most significant papers with an overview written by the author'. This would be sufficient to convince any researcher, student or librarian to acquire the book, so indisputable is the contribution of this man to the theoretical physics of the last half of our century ... Collected together, these brilliant works constitute a valuable contribution to the literature on modern classical and quantum gravity and cosmology. This book will certainly be a source of inspiration for new generations of physicists entering into this fascinating area of research". D Gal'tsov Classical & Quantum Gravity
The Euclidean approach to Quantum Gravity was initiated almost 15 years ago in an attempt to understand the difficulties raised by the spacetime singularities of classical general relativity which arise in the gravitational collapse of stars to form black holes and the entire universe in the Big Bang. An important motivation was to develop an approach capable of dealing with the nonlinear, non-perturbative aspects of quantum gravity due to topologically non-trivial spacetimes. There are important links with a Riemannian geometry. Since its inception the theory has been applied to a number of important physical problems including the thermodynamic properties of black holes, quantum cosmology and the problem of the cosmological constant. It is currently at the centre of a great deal of interest.This is a collection of survey lectures and reprints of some important lectures on the Euclidean approach to quantum gravity in which one expresses the Feynman path integral as a sum over Riemannian metrics. As well as papers on the basic formalism there are sections on Black Holes, Quantum Cosmology, Wormholes and Gravitational Instantons.
Bringing the material up to date, Black Holes, Wormholes and Time Machines, Second Edition captures the new ideas and discoveries made in physics since the publication of the best-selling first edition. While retaining the popular format and style of its predecessor, this edition explores the latest developments in high-energy astroparticle physics and Big Bang cosmology. The book continues to make the ideas and theories of modern physics easily understood by anyone, from researchers to students to general science enthusiasts. Taking you on a journey through space and time, author Jim Al-Khalili covers some of the most fascinating topics in physics today, including: Black holes Space warps The Big Bang Time travel Wormholes Parallel universes Professor Al-Khalili explains often complex scientific concepts in simple, nontechnical terms and imparts an appreciation of the cosmos, helping you see how time traveling may not be so far-fetched after all.
The Euclidean approach to Quantum Gravity was initiated almost 15 years ago in an attempt to understand the difficulties raised by the spacetime singularities of classical general relativity which arise in the gravitational collapse of stars to form black holes and the entire universe in the Big Bang. An important motivation was to develop an approach capable of dealing with the nonlinear, non-perturbative aspects of quantum gravity due to topologically non-trivial spacetimes. There are important links with a Riemannian geometry. Since its inception the theory has been applied to a number of important physical problems including the thermodynamic properties of black holes, quantum cosmology and the problem of the cosmological constant. It is currently at the centre of a great deal of interest.This is a collection of survey lectures and reprints of some important lectures on the Euclidean approach to quantum gravity in which one expresses the Feynman path integral as a sum over Riemannian metrics. As well as papers on the basic formalism there are sections on Black Holes, Quantum Cosmology, Wormholes and Gravitational Instantons.
This text records the recent events in the development of astrometry. The results of space missions in astrometry, Hipparcos and some results from the Hubble Space telescope are presented. Combined with ground-based results, this provides astrometry results at milliarcsecond resolution. At the same time, the extragalactic reference frame, based on very long baseline interferometry radio positions, is being introduced as the fundamental reference frame. It is now also evident that future optical interferometry space missions can provide an additional improvement in future of orders of magnitude. In addition to presenting the results, the text also discusses different applications based on such accurate astrometric positions.
In part one of Effective Action in Quantum Gravity, the book describes the principles of quantum field theory and the significance of and theory behind effective action. Part two deals with quantum field theory in curved space-time and the effective action. These two parts provide the tools for understanding the rest of the book, which is devoted to selected problems of quantum gravity where the effective action plays a major role. The book assumes only a basic understanding of quantum field theory and general relativity and will be of interest to postgraduate students and researchers in theoretical high-energy physics and gravitational theory.
Essential Relativistic Celestial Mechanics presents a systematic exposition of the essential questions of relativistic celestial mechanics and their relation to relativistic astrometry. The book focuses on the comparison of calculated and measurable quantities that is of paramount importance in using general relativity as a necessary framework in the discussion of high-precision observations and for the construction of accurate dynamical ephemerides. It discusses the results of the general relativistic theory of motion of celestial bodies and describes the relativistic theory of astronomical reference frames, time scales, and the reduction of observations.
This book provides insight into concept of the weak interaction and its integration into the conceptual structure of elementary particle physics. It exhibits the important role of the weak interaction in nuclear, particle and astrophysics together with the close connection between these areas.
The Star and the Whole: Gian-Carlo Rota on Mathematics and Phenomenology, authored by Fabrizio Palombi, is the first book to study Rota's philosophical reflection. Rota (1932 1999) was a leading figure in contemporary mathematics and an outstanding philosopher, inspired by phenomenology, who made fundamental contributions to combinatorial analysis, and trained several generations of mathematicians in his long career at the Massachusetts Institute of Technology (MIT) and the Los Alamos National Laboratory. The first chapter of the book reconstructs Rota's cultural biography and examines his philosophical style, his criticisms of analytical philosophy, and his reflection on Heidegger's thought. The second chapter presents a general picture of Rota's re-elaboration of phenomenology examined in the light of the Husserlian notion of Fundierung. This chapter also illustrates how the star-shape becomes a powerful instrument for understanding the properties of Husserl's mereology and the critique of objectivism. The third chapter is a theoretical reflection on the nature of mathematical entities, and the fourth examines the complex relation of mathematical research with technological applicability and scientific progress. The foreword of the text is written by Robert Sokolowski.
The last decade has witnessed a breathtaking expansion of ideas concerning the origin and evolution of the universe. Researchers in cosmology thus need an unprecedented wide background in diverse areas of physics. Bridging the gap that has developed, Physics of the Early Universe explains the foundations of this subject. This postgraduate-/research-level volume covers cosmology, gauge theories, the standard model, cosmic strings, and supersymmetry.
This book is intended as a supplementary text to the standard course books on theoretical physics and astrophysics, addressing applications and selected problems in theoretical physics and astrophysics, most of which are to a greater or lesser extent associated with electrodynamics.
Astronomical photographs contain an enormous amount of information. This presents extremely interesting problems when one wishes to produce digitized sky atlases, to archive the digitized material, to develop sophisticated devices to do the digitizing, and to create software to process the vast amounts of data. All these activities are necessary to be able to carry out astronomy work. One such activity is the important, large-scale optical identification of objects which also emit radiation at other wavelengths. Other activities of the past decade include a multiplicity of surveys that have been made on galaxies and clusters of galaxies. This book treats, in five sections, the existing and future surveys, their digitization and their impact on astronomy. It is designed to serve as a reference for people in the field and for those who wish to engage in using or producing sky surveys.
.".. is a worthwhile elementary treatment of the cosmology of the
early Universe written with a liveliness and simplicity that will
surely encourage students to pursue the subject further.'' .".. a superb guide to what is known about cosmology....The
authors also leave you with a sense of anticipation and
excitement.'' "The book is well written and interesting, particularly in its
use of Chinese stories throughout ... The book contains all the
standard material found in such texts. The chapters on the
thermodynamics of the Universe are particularly good ... this is a
first-rate book of its genre and is heartily recommended." "The best popular account of the science that explains how the
universe can be friendly to life is a book, 'Creation of the
Universe', by the Chinese astronomers, Fang Li Zhi and Li Shu Xian.
The book was translated into English and published by World
Scientific Publishing in 1989. Fang Li Zhi is the famous dissident
astronomer now living in exile in the United States. I particularly
recommend Chapter 6, with the title 'How Order Was Born of Chaos'.
This tells the same story that I am telling you today, but with
more detail and more depth."
.".. is a worthwhile elementary treatment of the cosmology of the
early Universe written with a liveliness and simplicity that will
surely encourage students to pursue the subject further.'' .".. a superb guide to what is known about cosmology....The
authors also leave you with a sense of anticipation and
excitement.'' "The book is well written and interesting, particularly in its
use of Chinese stories throughout ... The book contains all the
standard material found in such texts. The chapters on the
thermodynamics of the Universe are particularly good ... this is a
first-rate book of its genre and is heartily recommended." "The best popular account of the science that explains how the
universe can be friendly to life is a book, 'Creation of the
Universe', by the Chinese astronomers, Fang Li Zhi and Li Shu Xian.
The book was translated into English and published by World
Scientific Publishing in 1989. Fang Li Zhi is the famous dissident
astronomer now living in exile in the United States. I particularly
recommend Chapter 6, with the title 'How Order Was Born of Chaos'.
This tells the same story that I am telling you today, but with
more detail and more depth." |
You may like...
|